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JAMES J KAPUT (1942-2005) IMAGINEER AND 
FUTUROLOGIST OF MATHEMATICS EDUCATION 

David Tall 
University of Warwick, UK 

<davidtall@mac.com> 
Jim Kaput lived a full life in mathematics education and we have many reasons to be 
grateful to him, not only for his vision of the use of technology in mathematics, but 
also for his fundamental humanity. This paper considers the origins of his ‘big ideas’ 
as he lived through the most amazing innovations in technology that have changed 
our lives more in a generation than in many centuries before. His vision continues as 
is exemplified by the collected papers in this tribute to his life and work. 
Keywords: calculus, emergent algebra, multi-linked representations, SimCalc.  

INTRODUCTION 
Jim Kaput was a mathematician born into an age of change where he seized on the 
new technology as a means of making mathematics available to the whole 
population, as a ‘process of knowing’ rather than as an abstract platonic body of 
knowledge. His personal mathematical education occurred in an era of pencil and 
paper arithmetic, writing algebraic manipulations on paper and drawing geometrical 
figures with ruler and compass; arithmetic was performed to two or three significant 
figures using a slide rule. He lived his whole life in Massachusetts, with his 
adulthood in a house in North Dartmouth (dating from early pioneer days) not far 
from the University of Massachusetts at Darmouth where he spent his entire career as 
a mathematics professor. Born into a Polish family, he did not speak English until he 
went to school, but was a voracious reader, taking his ideas from a wide range of 
literature and building his own unique way of seeing into the future development of 
society. By looking back to recent times as well as forwards to the possibilities for 
the future, he was able to see how the new technologies were fundamentally changing 
our lives. From his origins in Massachusetts, he steadily enlarged his arena of 
operation to the wider reaches of the USA and subsequently spread his ideas to 
mathematics education communities around the whole world. He not only reflected 
on the future development and use of technology, he also designed new curricular 
materials based on software which he then made widely available as a free download 
from the internet. He is perhaps less publicly known for his quiet support for many 
fellow academics around the world who sought his assistance and benefited from his 
gentle diplomacy. Jim was a scholar and a gentleman. 

THE HISTORY OF KAPUT’S ‘BIG IDEAS’ 
Jim Kaput was fortunate to flourish in an era when computers developed from huge 
machines with tiny memories in the forties to personal computers with great power in 
the seventies and eighties, and on to hand-held devices and interpersonal 
communication in the nineties and early twenty-first century. 
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Jim began his mathematical life in a pre-computer era of paper, pencil and mental 
mathematics. As a young mathematics professor at Southern Massachusetts 
University, he took a special interest in teaching the calculus. In the mid-seventies, 
the Apple II computer made it possible for individuals to use the power of the 
computer in their own homes for the first time in history. However, at this time, his 
energies were still directed to traditional teaching methods in the calculus. His 
growing involvement led him to co-author a typical massive calculus text (Fleming & 
Kaput, 1979). It was replete with all that was necessary for a complete year-long 
course on differentiation, integration, differential equations and on to techniques in 
two and three dimensions. He told me it sold seven thousand copies, which may seem 
impressive, but it was a flea-bite in the huge market of American students taking 
college calculus. 
It is a salutary experience to read that book today. It is compendious (as all American 
calculus texts had to be to guarantee widespread take-up) but there is already a 
distinction between visual geometric ideas, marked with a special symbol to set them 
apart, numerical calculations to calculate good approximations and symbolic 
manipulations to give precise expression to the limit concept. His view at this time 
was the use of visual ideas to give human insights as a gentle introduction to the 
formal mathematics and the epsilon-delta definition of limit. It also marked the 
beginnings of ideas of multiple-linked representations which featured in his 
conversations. 
He first contacted me by letter in the late seventies when he learnt of my own interest 
in the calculus, and we shared experiences by airmail. I still have a photocopy draft 
of his first ‘official’ paper on ‘mathematics and learning’ (Kaput, 1979) which began 
with what he called a ‘Polemical Abstract’: 

This paper concerns itself with certain vital aspects of the platonism-constructivism issue 
and how they reflect themselves in our everyday work of teaching and learning. It is 
suggested that we are confronted with a pair of universes: one being the stark, atemporal, 
formal universe of ideal knowledge; the other being the organic, fluid, processual 
universe of human knowing. The former, Plato’s, has monopolized status and power, and 
is responsible for the fundamental dominance of product over process, the values by 
which legitimacy of knowledge is conferred, and the rules, particularly linguistic rules, 
under which any inquiry occurs. We illustrate how the manifold consequences of this 
status dominance permeate our academic lives at all levels, concentrating mainly on its 
exclusionary function in mathematics and mathematics knowing/learning. 

Here, in the first paragraph of his first paper is his distinction between the state of 
formal knowledge and the process of learning, which set the foundation for a life-
time of campaigning for the ‘democratization’ of mathematical knowledge, making it 
freely available to all, as a human process of learning and knowing rather than an 
austere body of knowledge that tended to freeze out many potential participants. 
In 1985, Jim invited me to visit him at his home in Massachusetts to share ideas and 
demonstrate my Graphic Calculus software. He astounded me with his insights. He 
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was grappling with his early ideas of symbol systems, but what made me sit up was 
the way in which he viewed the symbols typed into the computer as cybernetic 
entities that could carry out the computations internally, leaving the individual to 
think about broader issues. Listening to him talk about his vision was intoxicating. 
We had a lot to talk about concerning the calculus, as my research into students’ 
thinking about limits (Tall, 1975; Tall & Vinner, 1981) had led me to program 
Graphic Calculus software to enable the learner to zoom in on a curve to ‘see’ it 
becoming less curved, until it looked ‘locally straight’. This approach was validated 
both in terms of research into students’ known difficulties and also through formal 
theorems in non-standard analysis which proved that, under high magnification, the 
part of a graph that could be seen looked precisely like an infinitely straight line. 
I related graph-drawing to the continuous action of a pencil on paper, and while the 
theoretical graph had no thickness, the pencil drawing covered the underlying points 
on the graph (Stewart & Tall, 1977). It was necessary to learn to look through such 
pictures, as John Mason was later to observe. If one magnified a physical pencil 
graph, the thickness of the graph would also be magnified. However, if one 
magnified a graph on a computer screen, the magnified graph could be drawn to the 
same level of detail, whatever the scale; this enabled the user to ‘zoom in’ on a graph 
and ‘see’ the graph of a differentiable function becoming less curved until lt looked 
straight. I had great success in using this idea to encourage students to look along the 
graph to ‘see’ its changing slope and to be able to sketch the graph of the slope 
function. Thus the learner could imagine the slope graph in the mind’s eye and seek 
numeric approximations or symbolic precision. The embodiment therefore gave a 
meaning to the concept of changing slope while the use of the symbolism gave a 
reason for constructing the notion of limit. I saw this as a cognitive approach to the 
calculus which built on human perception and reflection, which could develop to be 
related later to formal developments in both standard and non-standard analysis. 
However, Jim’s vision was not just about the whole of calculus and analysis, not even 
just the whole of mathematics, but the broader issues of human life in a technological 
age. All graph-plotting software at the time, including my own, allowed the user to 
type in a symbolic formula and then to explore the properties of the resulting graph. 
Jim wanted to go further than that. A one-way link from symbol to graph was not 
enough. He wanted the student to be able to personally draw the graph and he 
imagined this as part of a framework of multiple-linked representations that 
dynamically connected real world phenomena to graphs and symbols that represented 
the rate of change, and the rate of growth. 
To enable the learner to be in full control of the activity required software both to 
receive input from sensors that measured real world data and also the facility for the 
learner to draw a graph with appropriate accuracy. For Jim, this entailed pointing and 
clicking the mouse at successive points with the computer joining the points as a 
piecewise linear graph. This approximation would please a mathematician who 
already used piece-wise linear functions as practical approximations to continuous 
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curves, enabling straightforward computations. But it introduced a new element into 
the initial conceptions of the calculus, in which the slope function consisted of a 
discontinuous sequence of piece-wise functions, one for each linear part of the graph. 
This gave a concept image of slope with a very different meaning from that which 
would occur later. Unlike my approach, which envisaged a locally straight curve 
which looked straight under magnification, his curves had corners and his derivatives 
were disconnected flat pieces, not locally linear curves that could possibly be 
differentiated again and again. 
Jim’s concern was to make the calculus meaningful to everyone by using technology 
to link the learner’s actions to a range of interconnected represetntatons. For me the 
long-term development of enormous power lay not just in the connection between 
specific real world events such as ‘distance’, ‘velocity’, ‘acceleration’, and ‘jerk’, in 
which each successive derivative had a new meaning. I even saw these disparate 
meanings as potential obstacles to the heart of the calculus where the derivative of a 
function is simply another function that may itself be differentiable again and again, 
leading to power series expansions and the magical relationship between the complex 
exponential function and the trigonometric functions. I saw this uniquely embodied in 
the notion of ‘local straightness’ that acted as a ‘generic organiser’ for the whole of 
the calculus, from the initial meanings in elementary calculus through to the 
embodied local flatness of differentiable manifolds. 
For Jim this was far off from his interests in democratizing the fundamental ideas of 
calculus for younger children and we each followed our own path while continuing to 
take a major interest in the work of the other; I built a long-term learning theory 
relating embodiment, symbolism and formal mathematics and he focused on using 
technology to make fundamental mathematical ideas available to everyone. As time 
passed we continued to meet regularly at conferences, never missing one without 
spending an evening together, honing our ideas by sharing them with a friend with a 
different, but sympathetic, perspective. 
Jim’s future became increasingly enriched by his vision of using the new 
technological changes to revolutionize the very ways in which we thought about and 
taught mathematics: 

Anyone who presumes to describe the roles of technology in mathematics education 
faces challenges akin to describing a newly active volcano – the mathematical mountain 
is changing before our eyes… (Kaput, 1992, p. 515.) 

He focused on the way in which younger children have intuitive sense of concepts 
such as distance, velocity, acceleration, which could be utilised in conjunction with 
computer simulations to study aspects of calculus at a far earlier age. He imagined 
computer representations far beyond the capacity of the computers available at the 
time involving simulations such as driving a car along a highway—linked to numeric 
and graphic displays of distance and velocity against time—allow a study of change 
which is not limited to functions given by standard formulae (figure 1). 
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Jim wisely never took the step of programming his own ideas, instead he went around 
at conferences showing mock-up simulations of them for several years before the 
technology reached a stage where it was powerful enough to develop SimCalc as a 
fully grown software package, programmed professionally. 
In the meantime, he tirelessly fought the case for new ways of conceptualizing 
algebra and calculus, dismissing the current ways of teaching mathematics, as being 
fundamentally flawed: 

School algebra in the US is institutionalized as two or more highly redundant courses, 
isolated from other subject matter, introduced abruptly to post-pubescent students, and 
often repeated at great cost as remedial mathematics at the post secondary level. Their 
content has evolved historically into the manipulation of strings of alphanumeric 
characters guided by various syntactical principles and conventions, occasionally 
interrupted by “applications” in the form of short problems presented in brief chunks of 
highly stylized text. All these are carefully organized into small categories of very similar 
activities that are rehearsed by category before introduction of the next category, when 
the process is repeated. The net effect is a tragic alienation from mathematics for those 
who survive this filter and an even more tragic loss of life-opportunity for those who 
don’t. (Kaput, 1995, p.71) 

This led to him broadening the scope of algebra into five strands: 
i. Algebra as generalizing and formalizing patterns and regularities, in 

particular, algebra as generalised arithmetic; 
ii. Algebra as syntactically guided manipulations of symbols; 

iii. Algebra as the study of structure and systems abstracted from computations 
and relations; 

 
Figure 1: An early vision of MathCars: simulating relationships 

between time, distance and velocity 
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iv. Algebra as the study of functions, relations and joint variations; 
v. Algebra as modelling. (Kaput 1998, p.26) 

He saw traditional school algebra mainly in terms of the second of these (symbol 
manipulation), currently taught in a way that made little sense to many students, and 
proposed the need to ‘algebrafy’ the mathematics curriculum to include earlier 
aspects of generalising patterns as generalised arithmetic, and later broadening 
algebra to include modelling, functions, and abstract structures. He followed an 
algebraic thread throughout his life, from studying the ways in which students 
(mis)conceptualised algebra, such as the student-professor problem (Kaput & Sims-
Knight 1983) to work on intensive quantities with Judah Schwartz (Kaput, Schwartz 
& Poholsky, 1985) through to recent developments in ‘emergent algebra’ that occur 
in the transition from arithmetic to algebra (Kaput, Carraher & Blanton, 2007). 
The major exemplification of his vision lay in his development of the software 
SimCalc, an approach using computer-based graphs and animations as well as 
symbols and tables to make mathematical rates of change and accumulation 
conceptually available to elementary and middle school students.  It has progressed 
over time as a beautiful interactive computer program (figure 2) implemented as an 
interconnected system with children using hand-held calculators to interact wirelessly 

 
Figure 2: SimCalc MathWorlds® linking imagined motion to time-distance graphs. 
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with a central display sharing individual operations on a communal screen.  
Kaput described this as ‘a harbinger of a whole new style of instruction that mixes 
“first person action” and “third person” observation and adjustment of mathematical 
objects.’ In figure 2, he saw the “froggie” character in the foreground being used to 
enact the student’s physical motion (imported from a sensor as the individual moved) 
as a template to cause the clowns in the parade to follow (or even move in some 
interesting counterpoint to the froggie’s motion). He saw this as one stage in a 
development in which students could ‘exploit their understandings in other settings, 
with quantities other than velocity, position, etc.’ 
Over the years we met regularly for a shared meal at several conferences a year 
(usually accompanied by suitable quantities of good quality local beer and the 
inevitable malt whisky) and continued to discuss our consonant but differing 
viewpoints. I saw the power of his implementation of SimCalc, though we continued 
to differ over whether to begin with piece-wise linear graphs, with their corners and 
piece-wise flat derivatives, or locally-straight graphs that embodied longer-term 
notions met in more advanced calculus. We had differences in our approach to 
symbolism too, with my work on procept theory with Eddie Gray (Gray & Tall, 
1991) seeking a flexible approach to number operations as process and concept while 
American commentators in general preferred a broader kind of ‘flexibility’ with the 
use of multi-linked representation. 
In more recent times Jim began to see the fruits of his earlier labours as his work on 
algebra and calculus came together in developing projects to share his ideas in the 
classroom. It was a great blow to us all when this intellectual giant of a man was 
taken from us with so much still to do. But the foundations of his vision are there to 
build upon. Although he had no personal religious persuasion, he continues to live in 
the hearts and minds of those who remain and those who continue his vision. 

THE JOURNEY CONTINUES 
The papers in this journal show that Jim’s vision continues to grow. The first is one 
of Jim’s recent collaborations with fellow co-workers, formulating developments of 
his insight into how technology allows symbols to carry the burden of calculation, 
allowing the learner to focus on the bigger, foundational ideas (Hegedus, Moreno & 
Kaput, 2007). This remains a continuing vision of the expressive use of symbolism in 
mathematics afforded by technology which occupied his attention in the last quarter 
of a century and is destined to remain a focus in years to come.  
Jim’s belief that technology will not simply be used to support the mathematics that 
we have now, but to develop entirely new ways of thinking mathematically, is taken 
up as a thought experiment in the second paper (Lesh, Caylor, Gupta & Middleton, 
2007). Here the focus is on statistics—largely used unthinkingly by the community as 
tools to support analysis of data. The paper considers the much-used least squares 
statistic and considers the alternative of using least distances in a new technological 
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approach that is both powerful and meaningful. Kaput’s ideas of rethinking 
mathematics using technology are at the very centre of this work. 
Schorr and Goldin (2007) offer a first-hand account of the use of Kaput’s software 
SimCalc in an inner city classroom. A small-scale study reports the joy and 
excitement of disadvantaged, even disaffected, children as they take an active part in 
their own learning using the software in meaningful ways. This confirms Jim’s vision 
of democratizing mathematics through technology actually works in a disadvantaged 
classroom. 
Noss and Hoyles (2007) view the wide programme of development suggested by 
Kaput (1992) in which he elucidated four major principles for the future use of 
technology: attend to representational infrastructure (i.e. look at how technology can 
represent ideas to help us think better), work for infrastructural change, outsource 
processing to the computer but attend to the implications, and exploit connectivity to 
encourage sharing and discussion. They illustrate their interpretation of all four  
principles, focusing in particular on the second and third, using technological 
infrastructure that helps organise our lives and outsourcing mathematical processing 
to the computer enabling the learner to focus on the wider picture. The four principles 
also permeate the other papers in the collection, vindicating the strength and 
pourpose of Kaput’s considered theoretical synthesis. 
Kaput’s desire, not only to think through the changes made possible by technology, 
but also to implement them on a wider scale, is taken up by Roschelle, Tatar, 
Shechtman & Knudsen (2007), with a study of SimCalc scaled up for use in the state 
of Texas. While mathematics education often involves carrying out small scale 
research and disseminating curriculum materials through publication, Jim saw the 
necessity of matching good ideas with curriculum support and interchange of 
experiences on a wide scale. Here we see Jim’s ideas continuing in an increasingly 
broadening framework to move from theoretical ideas and work in individual 
classrooms to in-depth analysis of larger-scale implementation. 
The final paper returns us to the continuing research in the James J Kaput Centre for 
Research and Innovation in Mathematics Education, working on the opportunities of 
a wireless-connected classroom where children can work together and in groups, 
submitting their work on hand-held devices for a central sharing of ideas for 
discussion amd development. Now we are seeing Jim’s vision of technology being 
used collaboratively for children to work actively with multi-linked representations to 
construct insightful shared ideas. His vision remains and continues into the future. 
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