53 research outputs found

    A Generic Agent Organisation Framework For Autonomic Systems

    No full text
    Autonomic computing is being advocated as a tool for managing large, complex computing systems. Specifically, self-organisation provides a suitable approach for developing such autonomic systems by incorporating self-management and adaptation properties into large-scale distributed systems. To aid in this development, this paper details a generic problem-solving agent organisation framework that can act as a modelling and simulation platform for autonomic systems. Our framework describes a set of service-providing agents accomplishing tasks through social interactions in dynamically changing organisations. We particularly focus on the organisational structure as it can be used as the basis for the design, development and evaluation of generic algorithms for self-organisation and other approaches towards autonomic systems

    Retinoic acid receptor γ activity in mesenchymal stem cells regulates endochondral bone, angiogenesis, and B lymphopoiesis

    Get PDF
    Retinoic acid receptor (RAR) signaling regulates bone structure and hematopoiesis through intrinsic and extrinsic mechanisms. This study aimed to establish how early in the osteoblast lineage loss of RARγ (Rarg) disrupts the bone marrow microenvironment. Bone structure was analyzed by micro–computed tomography (μCT) in Rarg–/– mice and mice with Rarg conditional deletion in Osterix‐Cre–targeted osteoblast progenitors or Prrx1‐Cre–targeted mesenchymal stem cells. Rarg–/– tibias exhibited less trabecular and cortical bone and impaired longitudinal and radial growth. The trabecular bone and longitudinal, but not radial, growth defects were recapitulated in Prrx1:RargΔ/Δ mice but not Osx1:RargΔ/Δ mice. Although both male and female Prrx1:RargΔ/Δ mice had low trabecular bone mass, males exhibited increased numbers of trabecular osteoclasts and Prrx1:RargΔ/Δ females had impaired mineral deposition. Both male and female Prrx1:RargΔ/Δ growth plates were narrower than controls and their epiphyses contained hypertrophic chondrocyte islands. Flow cytometry revealed that male Prrx1:RargΔ/Δ bone marrow exhibited elevated pro‐B and pre‐B lymphocyte numbers, accompanied by increased Cxcl12 expression in bone marrow cells. Prrx1:RargΔ/Δ bone marrow also had elevated megakaryocyte‐derived Vegfa expression accompanied by smaller sinusoidal vessels. Thus, RARγ expression by Prrx1‐Cre–targeted cells directly regulates endochondral bone formation and indirectly regulates tibial vascularization. Furthermore, RARγ expression by Prrx1‐Cre–targeted cells extrinsically regulates osteoclastogenesis and B lymphopoiesis in male mice. © 2018 American Society for Bone and Mineral Research

    Metatranscriptomics analysis reveals a novel transcriptional and translational landscape during Middle East respiratory syndrome coronavirus infection

    Get PDF
    Among all RNA viruses, coronavirus RNA transcription is the most complex and involves a process termed “discontinuous transcription” that results in the production of a set of 3′-nested, co-terminal genomic and subgenomic RNAs during infection. While the expression of the classic canonical set of subgenomic RNAs depends on the recognition of a 6- to 7-nt transcription regulatory core sequence (TRS), here, we use deep sequence and metagenomics analysis strategies and show that the coronavirus transcriptome is even more vast and more complex than previously appreciated and involves the production of leader-containing transcripts that have canonical and noncanonical leader-body junctions. Moreover, by ribosome protection and proteomics analyses, we show that both positive- and negative-sense transcripts are translationally active. The data support the hypothesis that the coronavirus proteome is much vaster than previously noted in the literature

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Gene-educational attainment interactions in a multi-population genome-wide meta-analysis identify novel lipid loci

    Get PDF
    Introduction: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes.Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant (p < 5 x 10(-8)) and suggestive (p < 1 x 10(-6)) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals).Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue.Discussion: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.Pathophysiology, epidemiology and therapy of agein

    Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity

    Get PDF
    Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol- increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels

    The cystic fibrosis gut as a potential source of multidrug resistant pathogens

    No full text
    Background: The emergence of multidrug resistant (MDR) pathogens represents a profound threat to global health. Individuals with CF have amongst the highest cumulative antibiotic exposure of any pa- tient group, including to critically-important last-line agents. While there is little evidence that antibiotic resistance in airway pathogens results in worse clinical outcomes for CF patients, the potential emergence of MDR pathogens in non-respiratory systems, as a consequence of CF care, represents a potential health threat to the wider population, including family and carers. Methods: Stool from 19 adults with CF and 16 healthy adult controls was subjected to metagenomic sequencing, to assess faecal resistome, and culture-based analysis. Resistant isolates were identified phe- notypically, and genetic determinants of resistance characterised by whole genome sequencing. Results: CF and control faecal resistomes differed significantly ( P = 0.0 0 03). The proportion of reads that mapped to mobile genetic elements was significantly higher in CF ( P = 0.014) and the composition was significantly different ( P = 0.0 0 01). Notably, CF patients displayed higher carriage of plasmid-mediated aminoglycoside-modifying genes ant (6)-Ib, aac (6 ′ )-Ip, and aph (3 ′ )-IIIa ( P < 0.01). Culture-based analy- sis supported higher aminoglycoside resistance, with a higher proportion of aminoglycoside-resistant, Gram-negative bacteria ( P < 0.0 0 01). Isolated extended spectrum beta lactamase (ESBL)-positive Es- cherichia coli from CF stool exhibited phenotypic resistance to tobramycin and gentamicin. Genomic anal- ysis showed co-localisation of both aminoglycoside resistance and ESBL genes, consistent with MDR emer- gence through horizontal gene transfer. Conclusions: The carriage of potentially transmissible resistance within the adult CF gut microbiome is considerably greater than in healthy individuals and could contribute to the emergence and dissemination of MDR pathogens.Steven L. Taylor, Lex E.X. Leong, Sarah K. Sims, Rebecca L. Keating, Lito E. Papanicolas, Alyson Richard, Fredrick M. Mobegi, Steve Wesselingh, Lucy D. Burr, Geraint B. Roger
    corecore