6,665 research outputs found

    Contamination in complex healthcare trials:the falls in care homes (FinCH) study experience

    Get PDF
    BACKGROUND: Trials are at risk of contamination bias which can occur when participants in the control group are inadvertently exposed to the intervention. This is a particular risk in rehabilitation studies where it is easy for trial interventions to be either intentionally or inadvertently adopted in control settings. The Falls in Care Homes (FinCH) trial is used in this paper as an example of a large randomised controlled trial of a complex intervention to explore the potential risks of contamination bias. We outline the FinCH trial design, present the potential risks from contamination bias, and the strategies used in the design of the trial to minimise or mitigate against this. The FinCH trial was a multi-centre randomised controlled trial, with embedded process evaluation, which evaluated whether systematic training in the use of the Guide to Action Tool for Care Homes reduced falls in care home residents. Data were collected from a number of sources to explore contamination in the FinCH trial. Where specific procedures were adopted to reduce risk of, or mitigate against, contamination, this was recorded. Data were collected from study e-mails, meetings with clinicians, research assistant and clinician network communications, and an embedded process evaluation in six intervention care homes. During the FinCH trial, there were six new falls prevention initiatives implemented outside the study which could have contaminated our intervention and findings. Methods used to minimise contamination were: cluster randomisation at the level of care home; engagement with the clinical community to highlight the risks of early adoption; establishing local collaborators in each site familiar with the local context; signing agreements with NHS falls specialists that they would maintain confidentiality regarding details of the intervention; opening additional research sites; and by raising awareness about the importance of contamination in research among participants. CONCLUSION: Complex rehabilitation trials are at risk of contamination bias. The potential for contamination bias in studies can be minimized by strengthening collaboration and dialogue with the clinical community. Researchers should recognise that clinicians may contaminate a study through lack of research expertise

    Redox-Active Nanomaterials For Nanomedicine Applications

    Get PDF
    Nanomedicine utilizes the remarkable properties of nanomaterials for the diagnosis, treatment, and prevention of disease. Many of these nanomaterials have been shown to have robust antioxidative properties, potentially functioning as strong scavengers of reactive oxygen species. Conversely, several nanomaterials have also been shown to promote the generation of reactive oxygen species, which may precipitate the onset of oxidative stress, a state that is thought to contribute to the development of a variety of adverse conditions. As such, the impacts of nanomaterials on biological entities are often associated with and influenced by their specific redox properties. In this review, we overview several classes of nanomaterials that have been or projected to be used across a wide range of biomedical applications, with discussion focusing on their unique redox properties. Nanomaterials examined include iron, cerium, and titanium metal oxide nanoparticles, gold, silver, and selenium nanoparticles, and various nanoscale carbon allotropes such as graphene, carbon nanotubes, fullerenes, and their derivatives/variations. Principal topics of discussion include the chemical mechanisms by which the nanomaterials directly interact with biological entities and the biological cascades that are thus indirectly impacted. Selected case studies highlighting the redox properties of nanomaterials and how they affect biological responses are used to exemplify the biologically-relevant redox mechanisms for each of the described nanomaterials

    The subgroup growth spectrum of virtually free groups

    Get PDF
    For a finitely generated group Γ\Gamma denote by μ(Γ)\mu(\Gamma) the growth coefficient of Γ\Gamma, that is, the infimum over all real numbers dd such that sn(Γ)<n!ds_n(\Gamma)<n!^d. We show that the growth coefficient of a virtually free group is always rational, and that every rational number occurs as growth coefficient of some virtually free group. Moreover, we describe an algorithm to compute μ\mu

    Reduction of Dendrite Formations to Improve the Appearance of the Powder Cured Films for Automotive Industry

    Get PDF
    The appearance of powder-coated films is dependent upon powder chemistry and spraying parameters. One of the most important physical factors controlling the powder film appearance is the microdeposition of the powder particles on the grounded substrate. During the electrostatic deposition of powder, the formation of dendrites and agglomerates was observed; these formations have an adverse effect on the final film appearance and their elimination may result in smoother and glossier films. Dendrites are generated due to bipolar charging and inter-particulate electrostatic attractive forces. The corona charging technique is mostly used in industrial powder coating applications. At low corona voltages (- 40 to - 60 kV) a greater degree of bipolar charging was observed compared to that at higher voltages (- 80 to - 100 kV). At the higher voltages, the increase n number of ions produces a more unipolar charging and higher charge-to-mass ratios. As the film builds up, the powder transfer efficiency decreases as the repulsion forces between oncoming charged particles and the already deposited powder layer increase. By controlling the deposition patterns, the final film appearance can be improved. The smoothest films were obtained when the voltage was ramped from - 60 to - 100 kV. Another method to reduce dendrite formations was to deposit powder particles charged unipolarly by first separating them from the oppositely charged ones by using a charge separator

    Identification of the Beagle 2 lander on Mars

    Get PDF
    The 2003 Beagle 2 Mars lander has been identified in Isidis Planitia at 90.43° E, 11.53° N, close to the predicted target of 90.50° E, 11.53° N. Beagle 2 was an exobiology lander designed to look for isotopic and compositional signs of life on Mars, as part of the European Space Agency Mars Express (MEX) mission. The 2004 recalculation of the original landing ellipse from a 3-sigma major axis from 174 km to 57 km, and the acquisition of Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) imagery at 30 cm per pixel across the target region, led to the initial identification of the lander in 2014. Following this, more HiRISE images, giving a total of 15, including red and blue-green colours, were obtained over the area of interest and searched, which allowed sub-pixel imaging using super high-resolution techniques. The size (approx. 1.5 m), distinctive multilobed shape, high reflectivity relative to the local terrain, specular reflections, and location close to the centre of the planned landing ellipse led to the identification of the Beagle 2 lander. The shape of the imaged lander, although to some extent masked by the specular reflections in the various images, is consistent with deployment of the lander lid and then some or all solar panels. Failure to fully deploy the panels-which may have been caused by damage during landing-would have prohibited communication between the lander and MEX and commencement of science operations. This implies that the main part of the entry, descent and landing sequence, the ejection from MEX, atmospheric entry and parachute deployment, and landing worked as planned with perhaps only the final full panel deployment failing
    • …
    corecore