10,693 research outputs found

    Linear LL-positive sets and their polar subspaces

    Full text link
    In this paper, we define a Banach SNL space to be a Banach space with a certain kind of linear map from it into its dual, and we develop the theory of linear LL-positive subsets of Banach SNL spaces with Banach SNL dual spaces. We use this theory to give simplified proofs of some recent results of Bauschke, Borwein, Wang and Yao, and also of the classical Brezis-Browder theorem.Comment: 11 pages. Notational changes since version

    Dynamics of the BCS-BEC crossover in a degenerate Fermi gas

    Get PDF
    We study the short-time dynamics of a degenerate Fermi gas positioned near a Feshbach resonance following an abrupt jump in the atomic interaction resulting from a change of external magnetic field. We investigate the dynamics of the condensate order parameter and pair wavefunction for a range of field strengths. When the abrupt jump is sufficient to span the BCS to BEC crossover, we show that the rigidity of the momentum distribution precludes any atom-molecule oscillations in the entrance channel dominated resonances observed in the 40K and 6Li. Focusing on material parameters tailored to the 40K Feshbach resonance system at 202.1 gauss, we comment on the integrity of the fast sweet projection technique as a vehicle to explore the condensed phase in the crossover regionComment: 5 pages, 4 figure

    Parametric correlations versus fidelity decay: the symmetry breaking case

    Full text link
    We derive fidelity decay and parametric energy correlations for random matrix ensembles where time--reversal invariance of the original Hamiltonian is broken by the perturbation. Like in the case of a symmetry conserving perturbation a simple relation between both quantities can be established.Comment: 8 pages, 8 figure

    Ising Deconfinement Transition Between Feshbach-Resonant Superfluids

    Full text link
    We investigate the phase diagram of bosons interacting via Feshbach-resonant pairing interactions in a one-dimensional lattice. Using large scale density matrix renormalization group (DMRG) and field theory techniques we explore the atomic and molecular correlations in this low-dimensional setting. We provide compelling evidence for an Ising deconfinement transition occurring between distinct superfluids and extract the Ising order parameter and correlation length of this unusual superfluid transition. This is supported by results for the entanglement entropy which reveal both the location of the transition and critical Ising degrees of freedom on the phase boundary.Comment: 4 pages, 4 figure

    A comparison of predicted and observed ocean tidal loading in Alaska

    Get PDF
    We investigate the elastic and anelastic response of the crust and upper mantle across Alaska to mass loading by ocean tides. GPS-inferred surface displacements recorded by the Plate Boundary Observatory network are compared with predictions of deformation associated with the redistribution of ocean water due to the tides. We process more than 5 yr of GPS data from 131 stations using a kinematic precise point positioning algorithm and estimate tidal contributions using harmonic analysis. We also forward calculate load-induced surface displacements by convolving ocean-tide models with load Green’s functions derived from spherically symmetric Earth models. We make the comparisons for dominant tidal harmonics in three frequency bands: semidiurnal (M₂), diurnal (O₁) and fortnightly (M_f). Vector differences between predicted and observed ocean tidal loading (OTL) displacements are predominantly sub-mm in magnitude in all three frequency bands and spatial components across the network, with larger residuals of up to several mm in some coastal areas. Accounting for the effects of anelastic dispersion in the upper mantle using estimates of Q from standard Earth models reduces the residuals for the M₂ harmonic by an average of 0.1–0.2 mm across the network and by more than 1 mm at some individual stations. For the relatively small M_f tide, the effects of anelastic dispersion (<0.03 mm) are undetectable within current measurement error. Incorporating a local ocean-tide model for the northeastern Pacific Ocean reduces the M₂ vertical residuals by an average of 0.2 mm, with improvements of up to 5 mm at some coastal stations. Estimated RMS observational uncertainties in the vertical component for the M₂ and O₁ tides are approximately ±0.08 mm at the two-sigma level (±0.03 mm in the horizontal components), and ±0.21 mm for the M_f harmonic (±0.07 mm in the horizontal components). For the M₂ harmonic, discrepancies between predicted and observed OTL displacements exceed observational uncertainties by about one order of magnitude. None of the ocean tide and Earth model combinations is found to reduce the M₂ residuals below the observational uncertainty, and no single forward model provides a best fit to the observed displacements across all tidal harmonics and spatial components. For the O₁ harmonic, discrepancies between predicted and observed displacements are generally several-fold larger than the observational uncertainties. For the M_f harmonic, the discrepancies are roughly within a factor of two of the observational uncertainties. We find that discrepancies between predicted and observed OTL displacements can be significantly reduced by removing a network-uniform tidal-harmonic displacement, and that the remaining discrepancies exhibit some regional-scale spatial coherency, particularly for the M₂ harmonic. We suggest that the remaining discrepancies for the M₂, O₁ and M_f tides cannot be fully explained by measurement error and instead convey information about deficiencies in ocean-tide models and deviations from spherically symmetric Earth structure

    Species Limits and Phylogeography of North American Cricket Frogs (Acris: Hylidae)

    Get PDF
    Cricket frogs are widely distributed across the eastern United States and two species, the northern cricket frog (Acris crepitans) and the southern cricket frog (A. gryllus) are currently recognized. We generated a phylogenetic hypothesis for Acris using fragments of nuclear and mitochondrial genes in separate and combined phylogenetic analyses. We also used distance methods and fixation indices to evaluate species limits within the genus and the validity of currently recognized subspecies of A. crepitans. The distributions of existing A. crepitans subspecies, defined by morphology and call types, do not match the distributions of evolutionary lineages recovered using our genetic data. We discuss a scenario of call evolution to explain this disparity. We also recovered distinct phylogeographic groups within A. crepitans and A. gryllus that are congruent with other codistributed taxa. Under a lineage-based species concept, we recognize Acris blanchardi as a distinct species. The importance of this revised taxonomy is discussed in light of the dramatic declines in A. blanchardi across the northern and western portions of its range

    Tail States in Disordered Superconductors with Magnetic Impurities: the Unitarity Limit

    Full text link
    When subject to a weak magnetic impurity distribution, the order parameter and quasi-particle energy gap of a weakly disordered bulk s-wave superconductor are suppressed. In the Born scattering limit, recent investigations have shown that `optimal fluctuations' of the random impurity potential can lead to the nucleation of `domains' of localised states within the gap region predicted by the conventional Abrikosov-Gor'kov mean-field theory, rendering the superconducting system gapless at any finite impurity concentration. By implementing a field theoretic scheme tailored to the weakly disordered system, the aim of the present paper is to extend this analysis to the consideration of magnetic impurities in the unitarity scattering limit. This investigation reveals that the qualitative behaviour is maintained while the density of states exhibits a rich structure.Comment: 18 pages AMSLaTeX (with LaTeX2e), 6 eps figure

    Geodetic, teleseismic, and strong motion constraints on slip from recent southern Peru subduction zone earthquakes

    Get PDF
    We use seismic and geodetic data both jointly and separately to constrain coseismic slip from the 12 November 1996 M_w 7.7 and 23 June 2001 M_w 8.5 southern Peru subduction zone earthquakes, as well as two large aftershocks following the 2001 earthquake on 26 June and 7 July 2001. We use all available data in our inversions: GPS, interferometric synthetic aperture radar (InSAR) from the ERS-1, ERS-2, JERS, and RADARSAT-1 satellites, and seismic data from teleseismic and strong motion stations. Our two-dimensional slip models derived from only teleseismic body waves from South American subduction zone earthquakes with M_w > 7.5 do not reliably predict available geodetic data. In particular, we find significant differences in the distribution of slip for the 2001 earthquake from models that use only seismic (teleseismic and two strong motion stations) or geodetic (InSAR and GPS) data. The differences might be related to postseismic deformation or, more likely, the different sensitivities of the teleseismic and geodetic data to coseismic rupture properties. The earthquakes studied here follow the pattern of earthquake directivity along the coast of western South America, north of 5°S, earthquakes rupture to the north; south of about 12°S, directivity is southerly; and in between, earthquakes are bilateral. The predicted deformation at the Arequipa GPS station from the seismic-only slip model for the 7 July 2001 aftershock is not consistent with significant preseismic motion
    corecore