58 research outputs found

    Early prediction of severe retinopathy of prematurity requiring laser treatment using physiological data

    Get PDF
    Background Early risk stratification for developing retinopathy of prematurity (ROP) is essential for tailoring screening strategies and preventing abnormal retinal development. This study aims to examine the ability of physiological data during the first postnatal month to distinguish preterm infants with and without ROP requiring laser treatment. Methods In this cohort study, preterm infants with a gestational age <32 weeks and/or birth weight <1500 g, who were screened for ROP were included. Differences in the physiological data between the laser and non-laser group were identified, and tree-based classification models were trained and independently tested to predict ROP requiring laser treatment. Results In total, 208 preterm infants were included in the analysis of whom 30 infants (14%) required laser treatment. Significant differences were identified in the level of hypoxia and hyperoxia, oxygen requirement, and skewness of heart rate. The best model had a balanced accuracy of 0.81 (0.72–0.87), a sensitivity of 0.73 (0.64–0.81), and a specificity of 0.88 (0.80–0.93) and included the SpO2/FiO2 ratio and baseline demographics (including gestational age and birth weight). Conclusions Routinely monitored physiological data from preterm infants in the first postnatal month are already predictive of later development of ROP requiring laser treatment, although validation is required in larger cohorts. Impact Routinely monitored physiological data from the first postnatal month are predictive of later development of ROP requiring laser treatment, although model performance was not significantly better than baseline characteristics (gestational age, birth weight, sex, multiple birth, prenatal glucocorticosteroids, route of delivery, and Apgar scores) alone. A balanced accuracy of 0.81 (0.72–0.87), a sensitivity of 0.73 (0.64–0.81), and a specificity of 0.88 (0.80–0.93) was achieved with a model including the SpO2/FiO2 ratio and baseline characteristics. Physiological data have potential to play a significant role for future ROP prediction and provide opportunities for early interventions to protect infants from abnormal retinal development

    Novel model-based dosing guidelines for gentamicin and tobramycin in preterm and term neonates

    Get PDF
    Objectives In the heterogeneous group of preterm and term neonates, gentamicin and tobramycin are mainly dosed according to empirical guidelines, after which therapeutic drug monitoring and subsequent dose adaptation are applied. In view of the variety of neonatal guidelines available, the purpose of this study was to evaluate target concentration attainment of these guidelines, and to propose a new model-based dosing guideline for these drugs in neonates. Methods Demographic characteristics of 1854 neonates (birth weight 390-5200 g, post-natal age 0-27 days) were extracted from earlier studies and sampled to obtain a test dataset of 5000 virtual patients. Monte Carlo simulations on the basis of validated models were undertaken to evaluate the attainment of target peak (5-12 mg/L) and trough (<0.5 mg/L) concentrations, and cumulative AUC, with the existing and proposed guidelines. Results Across the entire neonatal age and weight range, the Dutch National Formulary for Children, the British National Formulary for Children, Neofax and the Red Book resulted in adequate peak but elevated trough concentrations (63%-90% above target). The proposed dosing guideline (4.5 mg/kg gentamicin or 5.5 mg/kg tobramycin) with a dosing interval based on birth weight and post-natal age leads to adequate peak concentrations with only 33%-38% of the trough concentrations above target, and a constant AUC across weight and post-natal age. Conclusions The proposed neonatal dosing guideline for gentamicin and tobramycin results in improved attainment of target concentrations and should be prospectively evaluated in clinical studies to evaluate the efficacy and safety of this treatmen

    Larger First-Trimester Placental Volumetric Parameters Are Associated With Lower Pressure and More Flow-Mediated Vasodilation of the Fetoplacental Vasculature After Delivery

    Get PDF
    Objective: To explore the correlation between in vivo placental volumetric parameters in the first trimester of pregnancy and ex vivo parameters of fetoplacental vascular function after delivery. Methods: In ten singleton physiological pregnancies, placental volume (PV) and uteroplacental vascular volume (uPVV) were measured offline in three-dimensional ultrasound volumes at 7, 9, and 11 weeks gestational age (GA) using Virtual Organ Analysis and Virtual Reality. Directly postpartum, term placentas were ex vivo dually perfused and pressure in the fetoplacental vasculature was measured to calculate baseline pressure (pressure after a washout period), pressure increase (pressure after a stepwise fetal flow rate increase of 1 mL/min up to 6 mL/min) and flow-mediated vasodilation (FMVD; reduction in inflow hydrostatic pressure on the fetal side at 6 mL/min flow rate). Correlations between in vivo and ex vivo parameters were assessed by Spearman’s correlation coefficients (R). Results: Throu

    Association of inflammatory biomarkers with subsequent clinical course in suspected late onset sepsis in preterm neonates

    Get PDF
    Background: Sepsis is a major health issue in preterm infants. Biomarkers are used to diagnose and monitor patients with sepsis, but C-reactive protein (CRP) is proven not predictive at onset of late onset neonatal sepsis (LONS) diagnosis. The aim of this study was to evaluate the association of interleukin-6(IL-6), procalcitonin (PCT) and CRP with subsequent sepsis severity and mortality in preterm infants suspected of late onset neonatal sepsis. Methods: The study was conducted at the Erasmus University Medical Center–Sophia Children’s Hospital Rotterdam. Patient data from January 2018 until October 2019 were reviewed for all preterm neonates born with a gestational age below 32 weeks with signs and symptoms suggestive of systemic infection, in whom blood was taken for blood culture and for inflammatory biomarkers determinations. Plasma IL-6 and PCT were assessed next to CRP at the moment of suspicion. We assessed the association with 7-day mortality and sepsis severity (neonatal sequential organ failure assessment (nSOFA) score, need for inotropic support, invasive ventilation and thrombocytopenia). Results: A total of 480 suspected late onset neonatal sepsis episodes in 208 preterm neonates (gestational age < 32 weeks) were retrospectively analyzed, of which 143 episodes were classified as sepsis (29.8%), with 56 (11.7%) cases of culture negative, 63 (13.1%) cases of gram-positive and 24(5.0%) cases of gram-negative sepsis. A total of 24 (5.0%) sepsis episodes resulted in death within 7 days after suspicion of LONS. Both IL-6 (adjusted hazard ratio (aHR): 2.28; 95% CI 1.64–3.16; p < 0.001) and PCT (aHR: 2.91; 95% CI 1.70–5.00; p < 0.001) levels were associated with 7-day mortality; however, CRP levels were not significantly correlated with 7-day mortality (aHR: 1.16; 95% CI (0.68–2.00; p = 0.56). Log IL-6, log PCT and log CRP levels were all significantly correlated with the need for inotropic support. Conclusions: Our findings show that serum IL-6 and PCT levels at moment of suspected late onset neonatal sepsis offer valuable information about sepsis severity and mortality risk in infants born below 32 weeks of gestation. The discriminative value was superior to that of CRP. Determining these biomarkers in suspected sepsis may help identify patients with imminent severe sepsis, who may require more intensive monitoring and therapy

    Population Pharmacokinetics and Dosing Optimization of Ceftazidime in Term Asphyxiated Neonates during Controlled Therapeutic Hypothermia

    Get PDF
    Ceftazidime is an antibiotic commonly used to treat bacterial infections in term neonates undergoing controlled therapeutic hypothermia (TH) for hypoxic-ischemic encephalopathy after perinatal asphyxia. We aimed to describe the population pharmacokinetics (PK) of ceftazidime in asphyxiated neonates during hypothermia, rewarming, and normothermia and propose a population-based rational dosing regimen with optimal PK/pharmacodynamic (PD) target attainment. Data were collected in the PharmaCool prospective observational multicenter study. A population PK model was constructed, and the probability of target attainment (PTA) was assessed during all phases of controlled TH using targets of 100% of the time that the concentration in the blood exceeds the MIC (T.MIC) (for efficacy purposes and 100% T.4×MIC and 100% T.5×MIC to prevent resistance). A total of 35 patients with 338 ceftazidime concentrations were included. An allometrically scaled one-compartment model with postnatal age and body temperature as covariates on clearance was constructed. For a typical patient receiving the current dose of 100 mg/kg of body weight/day in 2 doses and assuming a worst-case MIC of 8 mg/L for Pseudomonas aeruginosa, the PTA was 99.7% for 100% T.MIC during hypothermia (33.7°C; postnatal age [PNA] of 2 days). The PTA decreased to 87.7% for 100% T.MIC during normothermia (36.7°C; PNA of 5 days). Therefore, a dosing regimen of 100 mg/kg/day in 2 doses during hypothermia and rewarming and 150 mg/kg/day in 3 doses during the following normothermic phase is advised. Higher-dosing regimens (150 mg/kg/day in 3 doses during hypothermia and 200 mg/kg/day in 4 doses during normothermia) could be considered when achievements of 100% T.4×MIC and 100% T.5×MIC are desired.</p

    Phenobarbital, midazolam pharmacokinetics, effectiveness, and drug-drug interaction in asphyxiated neonates undergoing therapeutic hypothermia

    Get PDF
    Background: Phenobarbital and midazolam are commonly used drugs in (near-)term neonates treated with therapeutic hypothermia for hypoxic-ischaemic encephalopathy, for sedation, and/or as anti-epileptic drug. Phenobarbital is an inducer of cytochrome P450 (CYP) 3A, while midazolam is a CYP3A substrate. Therefore, co-treatment with phenobarbital might impact midazolam clearance. Objectives: To assess pharmacokinetics and clinical anti-epileptic effectiveness of phenobarbital and midazolam in asphyxiated neonates and to develop dosing guidelines. Methods: Data were collected in the prospective multicentre PharmaCool study. In the present study, neonates treated with therapeutic hypothermia and receiving midazolam and/or phenobarbital were included. Plasma concentrations of phenobarbital and midazolam including its metabolites were determined in blood samples drawn on days 2–5 after birth. Pharmacokinetic analyses were performed using non-linear mixed effects modelling; clinical effectiveness was defined as no use of additional anti-epileptic drugs. Results: Data were available from 113 (phenobarbital) and 118 (midazolam) neonates; 68 were treated with both medications. Only clearance of 1-hydroxy midazolam was influenced by hypothermia. Phenobarbital co-administration increased midazolam clearance by a factor 2.3 (95% CI 1.9–2.9, p < 0.05). Anticonvulsant effectiveness was 65.5% for phenobarbital and 37.1% for add-on midazolam. Conclusions: Therapeutic hypothermia does not influence clearance of phenobarbital or midazolam in (near-)term neonates with hypoxic-ischaemic encephalopathy. A phenobarbital dose of 30 mg/kg is advised to reach therapeutic concentrations. Phenobarbital co-administration significantly increased midazolam clearance. Should phenobarbital be substituted by non-CYP3A inducers as first-line anticonvulsant, a 50% lower midazolam maintenance dose might be appropriate to avoid excessive exposure during the first days after birth. © 2019 The Author(s) Published by S. Karger AG, Base

    Doxapram versus placebo in preterm newborns: a study protocol for an international double blinded multicentre randomized controlled trial (DOXA-trial)

    Get PDF
    Abstract Background Apnoea of prematurity (AOP) is one of the most common diagnoses among preterm infants. AOP often leads to hypoxemia and bradycardia which are associated with an increased risk of death or disability. In addition to caffeine therapy and non-invasive respiratory support, doxapram might be used to reduce hypoxemic episodes and the need for invasive mechanical ventilation in preterm infants, thereby possibly improving their long-term outcome. However, high-quality trials on doxapram are lacking. The DOXA-trial therefore aims to investigate the safety and efficacy of doxapram compared to placebo in reducing the composite outcome of death or severe disability at 18 to 24 months corrected age. Methods The DOXA-trial is a double blinded, multicentre, randomized, placebo-controlled trial conducted in the Netherlands, Belgium and Canada. A total of 396 preterm infants with a gestational age below 29 weeks, suffering from AOP unresponsive to non-invasive respiratory support and caffeine will be randomized to receive doxapram therapy or placebo. The primary outcome is death or severe disability, defined as cognitive delay, cerebral palsy, severe hearing loss, or bilateral blindness, at 18–24 months corrected age. Secondary outcomes are short-term neonatal morbidity, including duration of mechanical ventilation, bronchopulmonary dysplasia and necrotising enterocolitis, hospital mortality, adverse effects, pharmacokinetics and cost-effectiveness. Analysis will be on an intention-to-treat principle. Discussion Doxapram has the potential to improve neonatal outcomes by improving respiration, but the safety concerns need to be weighed against the potential risks of invasive mechanical ventilation. It is unknown if the use of doxapram improves the long-term outcome. This forms the clinical equipoise of the current trial. This international, multicentre trial will provide the needed high-quality evidence on the efficacy and safety of doxapram in the treatment of AOP in preterm infants. Trial registration ClinicalTrials.gov NCT04430790 and EUDRACT 2019-003666-41. Prospectively registered on respectively June and January 2020
    • …
    corecore