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Early prediction of severe retinopathy of prematurity requiring
laser treatment using physiological data
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BACKGROUND: Early risk stratification for developing retinopathy of prematurity (ROP) is essential for tailoring screening strategies
and preventing abnormal retinal development. This study aims to examine the ability of physiological data during the first
postnatal month to distinguish preterm infants with and without ROP requiring laser treatment.
METHODS: In this cohort study, preterm infants with a gestational age <32 weeks and/or birth weight <1500 g, who were screened
for ROP were included. Differences in the physiological data between the laser and non-laser group were identified, and tree-based
classification models were trained and independently tested to predict ROP requiring laser treatment.
RESULTS: In total, 208 preterm infants were included in the analysis of whom 30 infants (14%) required laser treatment. Significant
differences were identified in the level of hypoxia and hyperoxia, oxygen requirement, and skewness of heart rate. The best model
had a balanced accuracy of 0.81 (0.72–0.87), a sensitivity of 0.73 (0.64–0.81), and a specificity of 0.88 (0.80–0.93) and included the
SpO2/FiO2 ratio and baseline demographics (including gestational age and birth weight).
CONCLUSIONS: Routinely monitored physiological data from preterm infants in the first postnatal month are already predictive of
later development of ROP requiring laser treatment, although validation is required in larger cohorts.

Pediatric Research; https://doi.org/10.1038/s41390-023-02504-6

IMPACT:

● Routinely monitored physiological data from the first postnatal month are predictive of later development of ROP requiring
laser treatment, although model performance was not significantly better than baseline characteristics (gestational age, birth
weight, sex, multiple birth, prenatal glucocorticosteroids, route of delivery, and Apgar scores) alone.

● A balanced accuracy of 0.81 (0.72–0.87), a sensitivity of 0.73 (0.64–0.81), and a specificity of 0.88 (0.80–0.93) was achieved with a
model including the SpO2/FiO2 ratio and baseline characteristics.

● Physiological data have potential to play a significant role for future ROP prediction and provide opportunities for early
interventions to protect infants from abnormal retinal development.

INTRODUCTION
Retinopathy of prematurity (ROP) is a common disease in preterm
infants, and accounts for 5–20% of childhood blindness in
developed countries.1 The number of infants at risk of ROP has
increased worldwide due to advances in perinatal and neonatal care
with improved neonatal survival rates. Timely screening and
intervention of high-risk infants for ROP is essential to prevent
development of severe ROP.2 However, screening infants for ROP is
thought to be painful, stressful and causes physiological instability.3,4

Classifying infants according to risk of developing ROP could be
useful to identify those where ROP progression should bemonitored
carefully through extra screening and conversely avoid unnecessary
screening examinations in infants who are predicted to be low risk.

However, the American Academy of Ophthalmology recently
assessed the accuracy of available prediction models for clinically
significant ROP and reported that model optimization is needed
before clinical application can be reached.5

Many putative risk factors for ROP have been described,
including gestational age and birth weight, perinatal and
postnatal inflammation, pulmonary complications, and anemia.6

Most guidelines use birth weight and gestational age to identify
infants in need of ROP screening, which is highly sensitive, but
results in screening of many infants who will not develop severe
disease.5 Fluctuations in oxygenation, resulting in oxidative stress,
are implicated in ROP.7,8 Several large randomized controlled trials
reported a higher incidence of ROP when high oxygen saturation
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(SpO2) targets were used,9,10 although this association was not
found in other trials.11,12 Hyperoxia related factors such as the use
of supplemental oxygen, oxygen concentration, duration, and
prolonged mechanical ventilation are among the most frequently
described risk factors for the development of severe and
treatment-requiring ROP.6

Most preterm infants in the neonatal intensive care unit are
continuously monitored. Although the obtained physiological
monitor data are used to detect trends and identify severe
episodes of physiological instability, this snapshot method means
that these data are often not used to their full potential and
opportunities to improve clinical management may be
missed.13–15 Analyzing physiological data could potentially lead
to the identification of meaningful patterns that would otherwise
be difficult or even impossible to identify, and may enable the
prediction of individual risk for ROP. Previously Sullivan et al.
investigated whether measures of heart rate and SpO2 in the first
7 days of life can improve predictions of mortality and morbidity
in very low birth weight infants.16 Whilst physiological data
improved prediction of death, severe intraventricular hemorrhage
and bronchopulmonary dysplasia, it did not improve prediction of
severe ROP beyond that made from demographics. A more
detailed analysis of physiological data, including measures of
oxygen requirement, may shed light on the predictive ability of
these data for ROP and whether a particular timeframe has greater
utility.
The aim of this study was to investigate if physiological monitor

data and oxygen requirement during the first 30 days after birth—
the period before the first ROP screening—differ between preterm
infants with and without severe ROP requiring laser treatment,
and to examine the ability of these data to predict infants who will
develop severe ROP requiring laser treatment.

METHODS
Study design and population
In this retrospective cohort study, physiological monitor data from the first
postnatal month were analyzed and used to build classification models to
distinguish infants with and without severe ROP requiring laser treatment.
Preterm infants who were screened for ROP at the level III Neonatal
Intensive Care Unit (NICU) of the Erasmus MC Sophia Children’s Hospital
between August 2016 and August 2020 were eligible for inclusion.
Exclusion criteria were a gestational age >32 weeks, a birth weight
>1500 g, and <80% availability of the physiological data in the first two
weeks after birth. Before the exclusion criteria were applied, the infants
were randomly 1:1 divided using R Software (version 4.1.1, R Foundation
for Statistical Computing, Vienna, Austria) into a training dataset and a test
dataset. The medical ethics committee of the Erasmus University Medical
Center granted a waiver from approval for this study according to the
Dutch Medical Research Involving Human Subjects Act (MEC-2018–1106).

Data acquisition
Demographic and clinical characteristics were collected from the electronic
medical records. The DIGIROP-Birth was calculated using the website that
the investigators of the score provided (https://www.digirop.com/
index.html).17 Data on the fraction of inspired oxygen (FiO2), SpO2, and
heart rate were collected from bedside monitors. Further details are given
in the Supplementary Methods.

ROP screening and outcome
The outcome of the study (i.e., the class for the machine learning) was
whether infants did or did not develop severe ROP requiring laser
coagulation. Laser coagulation was administered according to the ETROP
criteria.18 The incidental use of anti-VEGF (bevacizumab) was not taken
into account in this study. All preterm infants who were born with a
gestational age <32 weeks and/or birth weight <1500 g were, according to
local protocol, screened for ROP. The first screening was scheduled from
5 weeks postnatally, but not before 31 weeks of postmenstrual age. Data
on ROP screenings were collected from the reports of the experienced
ophthalmologists (S.E.L., A.M.T.) who performed the screening.

Data processing
Features were derived from the data on the SpO2, heart rate, and FiO2 and
calculated using the R Software (version 4.1.1, R Foundation for Statistical
Computing, Vienna, Austria) or MATLAB (R2021a).19 The methods to
calculate these features are presented in Supplemental Table 1. The
skewness of the SpO2 and heart rate were calculated with the “skewness”
function from the R package “e1071” as a measure of symmetry in the
distribution of the data, with a value of 0 indicating that the data has a
symmetric (normal) distribution.20 The mean SpO2, heart rate, FiO2, and
SpO2/FiO2 ratio were calculated per day. The skewness of the SpO2 and
heart rate, area under the 80% SpO2 curve, area above the 95% SpO2

curve, number of desaturations, number of bradycardia, and number of
tachycardia were processed as total amount per day. Measurements
marked as invalid by the bedside monitors were excluded from the
analysis.

Statistical analysis
Baseline characteristics were analyzed using the Wilcoxon rank sum
test, X2 test, and Fisher’s exact test. Time periods with differences in
each physiological feature between the laser and the non-laser group
in the training data were identified using a non-parametric cluster
analysis described by Maris and Oostenveld,21 see Supplementary
Methods.
To explore the predictive ability of physiological data, random forest

classification models were built on the training dataset to distinguish
between the laser and the non-laser group, see Supplementary Methods.
Model performance was measured using balanced accuracy, sensitivity,
specificity and the Matthew’s correlation coefficient (MCC) with leave-one-
out cross-validation in the training set. 95% confidence intervals were
calculated with the Agresti–Coull interval.
To compare the predictive ability of physiological features at different

time periods and with demographic features, 10 different models were
built in the training dataset. Model 1 was trained on all physiological
data from the first 30 days after birth. Model 2 was trained on the
physiological features that contained significant differences between the
laser and non-laser group, based on the non-parametric cluster analysis.
Model 3 was trained on physiological features in a selected time period
where most significant clusters were identified. To compare different
physiological features, univariate analyses were performed including the
physiological features from the first 30 days after birth; model 4 presents
the best performing model from these analyses. After this, model 5 was
trained on demographic features around birth only to compare the
predictive ability of physiological data with demographic features. Then,
the demographic features were added to the best performing models
including physiological data (model 6 and 7). Model 8 included clinical
features only (data on administered treatments and comorbidities; of
note some of these occurred after the first 30 postnatal days) and model
9 and 10 also included the features of the best performing physiological
models. As most infants who required laser treatment were born before
28 weeks of gestation a subgroup analysis was performed including
infants born ≤28 weeks of gestation by retraining the two best
performing models to increase the comparability between the laser
and non-laser group.
Two-sided mid-p value McNemar’s tests22 were used to compare

models. Significance was set to a p value <0.05; however, statistical
comparisons were calculated as a guide only (without correction for
multiple comparisons) and should not be interpreted as clearly indicating a
better model as this is context dependent.23 The probability that an
observation comes from a particular class was calculated by averaging over
all trees in the ensemble using the MATLAB “predict” function. Differences
in the sensitivity and specificity of the best performing models were
calculated for different probability thresholds.
The two models with the highest performance scores were trained

on the whole training set and externally validated by applying the
models with the original probability threshold of 0.5 to the
independent test set. These models were also trained on the training
and test set combined to investigate if model performance improved
by increasing sample size.

RESULTS
Study population
A total of 269 preterm infants with a gestational age below
32 weeks were screened at least once for ROP. Overall, 61 (23%)
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infants were excluded from the analyses—34 in the training
dataset and 27 in the test dataset. Infants were excluded due to a
birth weight >1500 g (N= 9) or <80% availability of monitor data
in the first 2 weeks after birth (N= 52, infants were admitted
elsewhere first (N= 50) or due to technical problems (N= 2)). Of
the remaining 208 infants, 100 were included in the training set
and 108 in the independent test set. Thirty (14%) infants required
laser treatment, of whom 15 infants were in the training dataset
and 15 infants in the test dataset. The incidence of laser treatment
did not differ between the training and the test dataset (p= 1.00),
although the infants in the training dataset were more often male
(p < 0.01) and had a longer NICU admission time (p= 0.04)
(Supplemental Table 2).

Demographic and clinical differences between the laser and
non-laser group
Infants who required laser treatment (assessed in the training
dataset) had a lower gestational age (p < 0.01) and birth weight
(p < 0.01) compared to infants who did not require laser treatment
(Table 1). Infants who required laser treatment more often
received treatment with inotropes (p= 0.01) and dexamethasone
(p < 0.01) during NICU admission. The DIGIROP probability was
higher in the infants with laser treatment compared to the infants
without laser treatment (p < 0.01).

Physiological data significantly differ between infants
requiring laser treatment and those who do not
In the training dataset, time periods were identified with a
significantly higher FiO2 level, SpO2/FiO2 ratio, time spent at an
SpO2 > 95%, and incidence of desaturations in the laser group
compared to the non-laser group (Fig. 1). The area under the 80%
SpO2, the percentage of time spent at an SpO2 ≤ 80%, and the
skewness of the heart rate had significant time periods with lower
levels in the laser group. No significant time periods were
identified in the mean SpO2, the skewness in the SpO2, the area
above the 95% SpO2, the mean heart rate, and the incidence of
bradycardia and tachycardia.

Physiological data are predictive of ROP treatment
A tree-based classification model including all physiological data
from the first 30 postnatal days had a balanced accuracy of 0.67
(0.57–0.76), a sensitivity of 0.60 (0.50–0.69), and a specificity of
0.74 (0.65–0.82) in the training set (Table 2, model 1, and Fig. 2).
Model performance was higher, though not significantly different,
when including the physiological data with significant time
periods only, based on the non-parametric cluster analysis, from
the first 30 days (Table 2, model 2). The highest t statistic levels in
most features were found between day 5–15 and day 25–30
(Supplemental Fig. 1). The balanced accuracy and specificity of

Table 1. Baseline demographics of the population from the training dataset.

All (N= 100) No ROP requiring laser
treatment (N= 85)

ROP requiring laser
treatment (N= 15)

p value*

Gestational age (weeks) 26.4 (25.3–27.6) 26.6 (25.6–28.0) 25.0 (24.5–25.6) <0.01

Birth weight (g) 830 (700–973) 855 (725–1020) 660 (577–790) <0.01

SGA (yes) 19 (19%) 17 (20%) 2 (13%) 0.73

Sex (male) 69 (69%) 62 (73%) 7 (47%) 0.08

Multiple birth (yes) 24 (24%) 22 (26%) 2 (13%) 0.51

Mortalitya (yes) 4 (4%) 3 (4%) 1 (7%) 0.48

Apgar

1min 5 (3–7) 5 (3–7) 6 (5–7) 0.45

5min 8 (7–8) 8 (7–8) 8 (7–9) 0.49

Route of delivery (section) 61 (61%) 50 (59%) 11 (73%) 0.39

Prenatal glucocorticoids (yes) 87 (87%) 75 (89%) 12 (80%) 0.41

Doses (n) 2 (1–2) 2 (1–2) 2 (1–2) 0.93

Treatments (yes)

Surfactant 79 (79%) 65 (76%) 14 (93%) 0.18

Inotropes 35 (35%) 25 (29%) 10 (67%) 0.01

Caffeine 99 (99%) 84 (99%) 15 (100%) 1.00

Doxapram 49 (49%) 41 (48%) 8 (53%) 0.93

Dexamethasone 34 (34%) 22 (26%) 12 (80%) <0.01

RBC transfusion 84 (84%) 69 (81%) 15 (100%) 0.12

iNO therapy 15 (15%) 10 (12%) 5 (33%) 0.08

Duration of NICU admission (days) 68 (53–94) 63 (50–82) 99 (86–108) <0.01

Comorbidities (yes)

NEC 13 (13%) 11 (13%) 2 (13%) 1.00

Sepsis 68 (68%) 55 (65%) 13 (87%) 0.13

IVH 19 (19%) 16 (19%) 3 (20%) 1.00

PDA 46 (46%) 38 (45%) 8 (53%) 0.74

DIGIROP probability (%) 6.1 (3.2–17.2) 5.2 (2.3–14.5) 17.8 (14.1–25.9) <0.01

Data from the training set are presented as median (IQR) and n (%). SGA small for gestational age, RBC red blood cell, iNO inhaled nitric oxide, NEC necrotizing
enterocolitis, IVH intraventricular hemorrhage, PDA patent ductus arteriosus.
*p value from the Wilcoxon rank sum test, X2 test, and Fisher’s exact test evaluated between the laser and non-laser group.
aThe group without ROP requiring laser treatment had a postmenstrual age of 46–49 weeks at the time of death and ROP treatment was not expected
anymore.
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Fig. 1 Graphs representing the physiological features for the group with and without laser treatment. Physiological features included the
fraction of inspired oxygen (FiO2), oxygen saturation (SpO2)/FiO2 ratio, SpO2, skewness of the SpO2, area <80% SpO2 curve, time percentage
<80% SpO2, area >95% SpO2 curve, time percentage >95% SpO2, incidence of desaturations, heart rate, skewness of the heart rate, and
incidence of bradycardia and tachycardia in the first 30 postnatal days for the group with (red) and without (blue) laser treatment. Data are
presented as median (IQR). The gray shaded areas mark time periods with significant differences (p < 0.05, non-parametric cluster analysis)
between the laser and the non-laser groups.
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model 3, included the physiological data with significant clusters
from day 5 to day 15, were significantly higher compared to
model 1 (Table 2). Adding the data from day 25 to day 30 to
model 3 did not improve performance (Supplemental Table 3).
Univariate analysis identified the SpO2/FiO2 ratio from the first 30
postnatal days as the best performing feature (Table 2, model 4;
and Supplemental Table 3).

Combining physiological with demographic and clinical
features
The balanced accuracy, sensitivity, and specificity of the model
including demographic features (gestational age, birth weight, sex,
multiple birth, amount of prenatal glucocorticosteroids doses, route
of delivery, and Apgar score at 1 and 5min) only (Table 2, model 5)
were lower, although not significantly, compared to models 3 and 4
with physiological data only. We next investigated whether
combining demographic and physiological data improved predic-
tion. Adding the demographics to the model including the
incidence of desaturations, area under the 80% SpO2 curve,
percentage of time below 80% SpO2, percentage of time above
95% SpO2, FiO2, SpO2/FiO2 ratio, and skewness heart rate from day 5
to day 15, did not significantly improvemodel performance (Table 2,
model 6). Combining the SpO2/FiO2 ratio from day 1 to day 30 and
the demographics resulted in a higher performance, although this
was not significantly different (Table 2, model 7). Model 6 had a
positive predictive value of 0.45 and a negative predictive value of
0.94, and model 7 had a positive and negative predictive value of
0.52 and 0.95 respectively. Adding clinical data during NICU
admission on treatment and comorbidities did not significantly
improve model performance (Table 2, models 8–10).
As most infants who required laser treatment were born before

28 weeks’ gestation models may be particularly applicable in the
youngest infants. The subgroup analysis including infants with a
gestational age ≤28 weeks only (N= 79) was performed by
retraining model 6 and 7 as they were the highest performing
models using data collected in the first 30 postnatal days before
ROP screening is conducted (unlike the models including clinical
data). Model 6 applied to infants in the subgroup had a balanced
accuracy of 0.69 (0.58–0.78), a sensitivity of 0.60 (0.49–0.70), a
specificity of 0.78 (0.68–0.86) and a MCC of 0.33. Model 7 applied

to infants in the subgroup had a balanced accuracy of 0.77
(0.67–0.85), a sensitivity of 0.67 (0.56–0.76), a specificity of 0.88
(0.78–0.93) and a MCC of 0.51.

Improved identification of infants requiring laser treatment
and model validation
To determine whether a model can identify all infants requiring
laser treatment, the probability thresholds of the best performing
models were varied (Fig. 2c). With a probability threshold of 0.25
in model 6 and 0.22 in model 7 15/15 infants requiring laser
treatment could be identified (sensitivity= 1.00) at the expense of
67/85 false positive infants (specificity= 0.21) in model 6 and 52/
85 false positive infants (specificity= 0.39) in model 7; this would
still enable a substantial reduction in the number of infants
unnecessarily screened.
Models 6 and 7 were validated on the data of the independent

test set (Table 3). To assess whether sample size had an effect on
performance the models were also retrained on data from the
training and test set combined (Table 3).

DISCUSSION
This study investigated whether routinely monitored physiological
data from the first 30 postnatal days (a clinically relevant period
before the first ROP screening) could be used for the early
identification of preterm infants at risk of severe ROP requiring
laser treatment. Differences were observed in the level of hypoxia
and hyperoxia, the fractional inspired oxygen requirement, and
skewness of the heart rate; and the physiological data, especially
the SpO2/FiO2 ratio, could be used to achieve good predictions of
ROP requiring laser treatment. Prediction performance was
increased, though not significantly, by including baseline demo-
graphics and clinical factors. Importantly, good predictions were
achieved using physiological data from only day 5 to day 15 after
birth, highlighting both the early predictive ability of physiological
data and a time window during which infants may be especially
vulnerable to oxidative stress and so could particularly benefit
from careful management of oxygenation and ventilation.
Periods with increased use of supplemental oxygen and a

higher level of hypoxia and hyperoxia were detected in the first
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postnatal weeks in infants with ROP requiring laser treatment. The
association between ROP and the use of supplemental oxygen,
periods of hyperoxia and hypoxia and time outside the targeted
saturation range have been described in multiple studies.2,12,24–26

The classic oxygen-induced retinopathy animal model describes
the effect of hypoxia and hyperoxia in the pathophysiology of ROP
with vaso-obliteration during hyperoxia exposure and vaso-
proliferation during relative hypoxia, although further research is
still needed for detailed understanding of pathological changes.27

The ability of physiological and demographic data to predict
severe ROP has been previously investigated by Sullivan et al.16,
although the pulse oximetry variables did not improve prediction
in their analysis. Adding physiological data to the demographic
data in our study did not significantly increase the performance of
the models. However, 4 more patients out of 15 were correctly
identified as high-risk patients for developing ROP compared with
the model using demographic data only which is clinically
important and the lack of statistical significance is likely limited
by the small sample size. The use of supplemental oxygen, and
consequently the SpO2/FiO2 ratio, was higher in our study during
the whole study period apart from the first few days after birth.
The SpO2/FiO2 ratio performed best in the univariate analyses and
might be a sufficient reflection of the saturation profiles of
patients at risk.
Recently, the DIGIROP-Birth and DIGIROP-Screen have been

developed to predict ROP requiring treatment using birth
demographics and ROP progression data.17,28 The DIGIROP-
Birth probability in our data was significantly higher in the laser
group compared to the non-laser group. In initial model
development we aimed to achieve high accuracy; however,
clinically it is essential that no infants requiring treatment are
missed. Varying the probability threshold of our model enabled
us to achieve 100% sensitivity, with a specificity of 39%, similar to
the results of DIGIROP-Screen at birth, and similar or higher
compared to former developed models including the WINROP,
G-ROP criteria, and a model based on Swiss data.28–31 As
physiological data from only the first 30 days after birth were
included in our model, the number of infants who are
unnecessarily screened could already be reduced by 40% prior
to the first screening. We speculate that combining the
physiological data with the ROP progression data could further
improve prediction, especially when using photographic doc-
umentation and telemedicine.32,33

A limitation of our study is the relatively low number of infants
with ROP requiring laser treatment and the small overall data size.
This likely explains the drop in performance of the classification
models when applied to the independent test cohort. Intra- and
inter-site differences should be assessed to further optimize the
algorithm, using much larger sample sizes.34 This highlights the
need for sharing physiological and neonatal outcome data;
developing a consensus of a standardized format for data sharing
is important to facilitate these aims.13 The NEDROP2 study and a
large Swiss study reported that, respectively, 39 out of 1085 (3.6%)
and 94 out of 7817 (1.2%) fully screened infants received
treatment for developing ROP.35,36 This is lower compared to

the 14% of infants in our study who required laser treatment,
probably because our study population is not fully comparable to
these studies which included infants born at both high-care and
regional centers and highlights the likely need to include infants
from lower-care settings to create a model that will be accurate in
all centers. Moreover, the relatively small sample size may have
exacerbated problems caused by imbalance of the data. Training
decision tree classifiers on an unbalanced dataset can lead to
frequency bias and a poor accuracy, by learning from data
observations that occur more frequently. To avoid bias and
increase the model performance we used a random under-
sampling algorithm, and balanced accuracy was calculated to
better reflect model performance.
In summary, routinely monitored physiological data is pre-

dictive of ROP requiring laser treatment in preterm infants,
although it did not significantly improve prediction from baseline
characteristics in this study. Continuous analysis of these data will
improve our understanding of important time periods when
infants are at risk for developing ROP to optimize preventive
policies. Combining physiological data with existing risk scores
and automatic photographic documentation needs further
investigation with larger sample sizes but could potentially
enhance objective assessment of ROP risk profiles in the future.
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