60 research outputs found

    On well-posedness, stability, and bifurcation for the axisymmetric surface diffusion flow

    Get PDF
    In this article, we study the axisymmetric surface diffusion flow (ASD), a fourth-order geometric evolution law. In particular, we prove that ASD generates a real analytic semiflow in the space of (2 + \alpha)-little-H\"older regular surfaces of revolution embedded in R^3 and satisfying periodic boundary conditions. We also give conditions for global existence of solutions and prove that solutions are real analytic in time and space. Further, we investigate the geometric properties of solutions to ASD. Utilizing a connection to axisymmetric surfaces with constant mean curvature, we characterize the equilibria of ASD. Then, focusing on the family of cylinders, we establish results regarding stability, instability and bifurcation behavior, with the radius acting as a bifurcation parameter for the problem.Comment: 37 pages, 6 figures, To Appear in SIAM J. Math. Ana

    Dynamic Transitions for Quasilinear Systems and Cahn-Hilliard equation with Onsager mobility

    Full text link
    The main objectives of this article are two-fold. First, we study the effect of the nonlinear Onsager mobility on the phase transition and on the well-posedness of the Cahn-Hilliard equation modeling a binary system. It is shown in particular that the dynamic transition is essentially independent of the nonlinearity of the Onsager mobility. However, the nonlinearity of the mobility does cause substantial technical difficulty for the well-posedness and for carrying out the dynamic transition analysis. For this reason, as a second objective, we introduce a systematic approach to deal with phase transition problems modeled by quasilinear partial differential equation, following the ideas of the dynamic transition theory developed recently by Ma and Wang

    Stability of complex hyperbolic space under curvature-normalized Ricci flow

    Full text link
    Using the maximal regularity theory for quasilinear parabolic systems, we prove two stability results of complex hyperbolic space under the curvature-normalized Ricci flow in complex dimensions two and higher. The first result is on a closed manifold. The second result is on a complete noncompact manifold. To prove both results, we fully analyze the structure of the Lichnerowicz Laplacian on complex hyperbolic space. To prove the second result, we also define suitably weighted little H\"{o}lder spaces on a complete noncompact manifold and establish their interpolation properties.Comment: Some typos in version 2 are correcte

    Pattern Formation of the Attraction-Repulsion Keller-Segel System

    Get PDF
    In this paper, the pattern formation of the attraction-repulsion Keller-Segel (ARKS) system is studied analytically and numerically. By the Hopf bifurcation theorem as well as the local and global bifurcation theorem, we rigorously establish the existence of time-periodic patterns and steady state patterns for the ARKS model in the full parameter regimes, which are identified by a linear stability analysis. We also show that when the chemotactic attraction is strong, a spiky steady state pattern can develop. Explicit time-periodic rippling wave patterns and spiky steady state patterns are obtained numerically by carefully selecting parameter values based on our theoretical results. The study in the paper asserts that chemotactic competitive interaction between attraction and repulsion can produce periodic patterns which are impossible for the chemotaxis model with a single chemical (either chemo-attractant or chemo-repellent)

    Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension

    Full text link
    The qualitative behavior of a thermodynamically consistent two-phase Stefan problem with surface tension and with or without kinetic undercooling is studied. It is shown that these problems generate local semiflows in well-defined state manifolds. If a solution does not exhibit singularities in a sense made precise below, it is proved that it exists globally in time and its orbit is relatively compact. In addition, stability and instability of equilibria is studied. In particular, it is shown that multiple spheres of the same radius are unstable, reminiscent of the onset of Ostwald ripening.Comment: 56 pages. Expanded introduction, added references. This revised version is published in Arch. Ration. Mech. Anal. (207) (2013), 611-66

    Spatiotemporal Patterns of Precipitation-Modulated Landslide Deformation From Independent Component Analysis of InSAR Time Series

    No full text
    Long-term landslide deformation is disruptive and costly in urbanized environments. We rely on TerraSAR-X satellite images (2009–2014) and an improved data processing algorithm (SqueeSAR™) to produce an exceptionally dense Interferometric Synthetic Aperture Radar ground deformation time series for the San Francisco East Bay Hills. Independent and principal component analyses of the time series reveal four distinct spatial and temporal surface deformation patterns in the area around Blakemont landslide, which we relate to different geomechanical processes. Two components of time-dependent landslide deformation isolate continuous motion and motion driven by precipitation-modulated pore pressure changes controlled by annual seasonal cycles and multiyear drought conditions. Two components capturing more widespread seasonal deformation separate precipitation-modulated soil swelling from annual cycles that may be related to groundwater level changes and thermal expansion of buildings. High-resolution characterization of landslide response to precipitation is a first step toward improved hazard forecasting
    corecore