1,153 research outputs found

    Pharmacogenetics of hypersensitivity drug reactions

    Get PDF
    Adverse drug reactions are a significant cause of morbidity and mortality and represent a major burden on the healthcare system. Some of those reactions are immunologically mediated (hypersensitivity reactions) and can be clinically subdivided into two categories: immediate reactions (IgE-related) and delayed reactions (T-cell-mediated). Delayed hypersensitivity reactions include both systemic syndromes and organ-specific toxicities and can be triggered by a wide range of chemically diverse drugs. Recent studies have demonstrated a strong genetic association between human leukocyte antigen alleles and susceptibility to delayed drug hypersensitivity. Most notable examples include human leukocyte antigen (HLA)-B*57:01 allele and abacavir hypersensitivity syndrome or HLA-B*15:02 and HLA-B*58:01 alleles related to severe cutaneous reactions induced by carbamazepine and allopurinol, respectively. This review aims to explore our current understanding in the field of pharmacogenomics of HLA-associated drug hypersensitivities and its translation into clinical practice for predicting adverse drug reactions

    In-111 octreotide SPECT/CT in the early diagnosis of pulmonary sarcoidosis: A case report

    Get PDF
    Sarcoidosis is a granulomatous disease of unknown etiology. At present the best diagnostic imaging procedure to assess stage and activity of sarcoidosis is controversial. We report the case of a 50-year-old male admitted with a history of dyspnea and fatigue with past medical history negative for smoking, occupational and environmental risk factors. Physical examination, routine blood tests, and pulmonary function tests were normal except for hypercalciuria. A chest radiograph showed bilateral hilar lymphadenopathy. Single photon emission computed tomography and/or computed tomography (SPECT and/or CT) In-111 Octreotide (Octreoscan) scintigraphy confirmed morphologic involvement of bilateral hilar lymph nodes and a mediastinoscopy biopsy specimen provided diagnosis of pulmonary sarcoidosis (stage 0). This clinical case shows the effectiveness of In-111 Octreotide SPECT and/or CT in the early diagnosis of pulmonary sarcoidosis

    Immunoregulatory Role of HLA-G in Allergic Diseases

    Get PDF
    Allergic diseases are sustained by a T-helper 2 polarization leading to interleukin-4 secretion, IgE-dependent inflammation, and mast cell and eosinophil activation. HLA-G molecules, both in membrane-bound and in soluble forms, play a central role in modulation of immune responses. Elevated levels of soluble HLA-G (sHLA-G) molecules are detected in serum of patients with allergic rhinitis to seasonal and perennial allergens and correlate with allergen-specific IgE levels, clinical severity, drug consumption, and response to allergen-specific immunotherapy. sHLA-G molecules are also found in airway epithelium of patients with allergic asthma and high levels of sHLA-G molecules are detectable in plasma and bronchoalveolar lavage of asthmatic patients correlating with allergen-specific IgE levels. Finally, HLA-G molecules are expressed by T cells, monocytes-macrophages, and Langerhans cells infiltrating the dermis of atopic dermatitis patients. Collectively, although at present it is difficult to completely define the role of HLA-G molecules in allergic diseases, it may be suggested that they are expressed and secreted by immune cells during the allergic reaction in an attempt to suppress allergic inflammation

    expression of membrane bound human leucocyte antigen g in systemic sclerosis and systemic lupus erythematosus

    Get PDF
    Abstract Human leucocyte antigen-G (HLA-G) is a nonclassical class I major histocompatibility complex (MHC) molecule characterized by complex immunoregulatory and tolerogenic functions. Membrane-bound HLA-G is expressed on the surface of different cell populations in both physiological and pathological conditions. Systemic sclerosis (SSc) is a multisystem autoimmune disease characterized by widespread tissue fibrosis, vascular lesions and immunological alterations. Systemic lupus erythematosus is the prototypic systemic autoimmune disease affecting virtually any organ system, such as skin, joints, central nervous system, or kidneys. In SSc and SLE patients, the membrane expression of HLA-G on monocytes (0.88 ± 1.54 and 0.43 ± 0.75, respectively), CD4+ (0.42 ± 0.78 and 0.63 ± 0.48, respectively), CD8+ (2.65 ± 3.47 and 1.29 ± 1.34, respectively) and CD4+ CD8+ double-positive cells (13.87 ± 15.97 and 3.79 ± 3.11, respectively) was significantly higher than in healthy controls (0.12 ± 0.07; 0.01 ± 0.01; 0.14 ± 0.20 and 0.32 ± 0.38, respectively) (

    Interaction between Human NK Cells and Bone Marrow Stromal Cells Induces NK Cell Triggering: Role of NKp30 and NKG2D Receptors

    Get PDF
    Abstract In this study we have analyzed the interaction between in vitro cultured bone marrow stromal cells (BMSC) and NK cells. Ex vivo-isolated NK cells neoexpressed the activation Ag CD69 and released IFN-γ and TNF-α upon binding with BMSC. Production of these proinflammatory cytokines was dependent on ligation of ICAM1 expressed on BMSC and its receptor LFA1 on NK cells. Furthermore, the NKp30, among natural cytotoxicity receptors, appeared to be primarily involved in triggering NK cells upon interaction with BMSC. Unexpectedly, autologous IL-2-activated NK cells killed BMSC. Again, LFA1/ICAM1 interaction plays a key role in NK/BMSC interaction; this interaction is followed by a strong intracellular calcium increase in NK cells. More importantly, NKG2D/MHC-I-related stress-inducible molecule A and/or NKG2D/UL-16 binding protein 3 engagement is responsible for the delivery of a lethal hit. It appears that HLA-I molecules do not protect BMSC from NK cell-mediated injury. Thus, NK cells, activated upon binding with BMSC, may regulate BMSC survival

    Increased entropy of signal transduction in the cancer metastasis phenotype

    Get PDF
    Studies into the statistical properties of biological networks have led to important biological insights, such as the presence of hubs and hierarchical modularity. There is also a growing interest in studying the statistical properties of networks in the context of cancer genomics. However, relatively little is known as to what network features differ between the cancer and normal cell physiologies, or between different cancer cell phenotypes. Based on the observation that frequent genomic alterations underlie a more aggressive cancer phenotype, we asked if such an effect could be detectable as an increase in the randomness of local gene expression patterns. Using a breast cancer gene expression data set and a model network of protein interactions we derive constrained weighted networks defined by a stochastic information flux matrix reflecting expression correlations between interacting proteins. Based on this stochastic matrix we propose and compute an entropy measure that quantifies the degree of randomness in the local pattern of information flux around single genes. By comparing the local entropies in the non-metastatic versus metastatic breast cancer networks, we here show that breast cancers that metastasize are characterised by a small yet significant increase in the degree of randomness of local expression patterns. We validate this result in three additional breast cancer expression data sets and demonstrate that local entropy better characterises the metastatic phenotype than other non-entropy based measures. We show that increases in entropy can be used to identify genes and signalling pathways implicated in breast cancer metastasis. Further exploration of such integrated cancer expression and protein interaction networks will therefore be a fruitful endeavour.Comment: 5 figures, 2 Supplementary Figures and Table

    Recurrence of COVID-19 related symptoms and viral detection in a patient discharged after complete recovery and test negativization

    Get PDF
    Since the novel coronavirus disease 2019 (COVID-19) has been declared a pandemic, the possibility of recurrence of the disease after recovery has become a debated issue. We report a case of an 84-years-old male patient who was admitted to our hospital for dyspnea and fever. Lab and clinical workout showed that he had COVID-19. After a full recovery of symptoms and a double negative nasopharyngeal swab of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) by realtime polymerase chain reaction assay, he was discharged from the hospital. One month later, he developed dyspnea and fever again with lung involvement. Surprisingly, the nasopharyngeal swab of SARS-CoV-2 was positive. Since he denied contacts with confirmed or suspected cases of COVID-19, he probably experienced a reactivation of a persistent infection. The failed eradication of the virus could depend on both virus' escape mechanisms and dysfunctional immune response. Further studies are needed to confirm the hypothesis of viral reactivation and identify signs of an incomplete clearance

    Psychological treatments and psychotherapies in the neurorehabilitation of pain. Evidences and recommendations from the italian consensus conference on pain in neurorehabilitation

    Get PDF
    BACKGROUND: It is increasingly recognized that treating pain is crucial for effective care within neurological rehabilitation in the setting of the neurological rehabilitation. The Italian Consensus Conference on Pain in Neurorehabilitation was constituted with the purpose identifying best practices for us in this context. Along with drug therapies and physical interventions, psychological treatments have been proven to be some of the most valuable tools that can be used within a multidisciplinary approach for fostering a reduction in pain intensity. However, there is a need to elucidate what forms of psychotherapy could be effectively matched with the specific pathologies that are typically addressed by neurorehabilitation teams. OBJECTIVES: To extensively assess the available evidence which supports the use of psychological therapies for pain reduction in neurological diseases. METHODS: A systematic review of the studies evaluating the effect of psychotherapies on pain intensity in neurological disorders was performed through an electronic search using PUBMED, EMBASE, and the Cochrane Database of Systematic Reviews. Based on the level of evidence of the included studies, recommendations were outlined separately for the different conditions. RESULTS: The literature search yielded 2352 results and the final database included 400 articles. The overall strength of the recommendations was medium/low. The different forms of psychological interventions, including Cognitive-Behavioral Therapy, cognitive or behavioral techniques, Mindfulness, hypnosis, Acceptance and Commitment Therapy (ACT), Brief Interpersonal Therapy, virtual reality interventions, various forms of biofeedback and mirror therapy were found to be effective for pain reduction in pathologies such as musculoskeletal pain, fibromyalgia, Complex Regional Pain Syndrome, Central Post-Stroke pain, Phantom Limb Pain, pain secondary to Spinal Cord Injury, multiple sclerosis and other debilitating syndromes, diabetic neuropathy, Medically Unexplained Symptoms, migraine and headache. CONCLUSIONS: Psychological interventions and psychotherapies are safe and effective treatments that can be used within an integrated approach for patients undergoing neurological rehabilitation for pain. The different interventions can be specifically selected depending on the disease being treated. A table of evidence and recommendations from the Italian Consensus Conference on Pain in Neurorehabilitation is also provided in the final part of the pape

    N-BLR, a primate-specific non-coding transcript leads to colorectal cancer invasion and migration

    Get PDF
    Background: non-coding RNAs have been drawing increasing attention in recent years as functional data suggest that they play important roles in key cellular processes. N-BLR is a primate-specific long non-coding RNA that modulates the epithelial-to-mesenchymal transition, facilitates cell migration, and increases colorectal cancer invasion. Results: we performed multivariate analyses of data from two independent cohorts of colorectal cancer patients and show that the abundance of N-BLR is associated with tumor stage, invasion potential, and overall patient survival. Through in vitro and in vivo experiments we found that N-BLR facilitates migration primarily via crosstalk with E-cadherin and ZEB1. We showed that this crosstalk is mediated by a pyknon, a short ~20 nucleotide-long DNA motif contained in the N-BLR transcript and is targeted by members of the miR-200 family. In light of these findings, we used a microarray to investigate the expression patterns of other pyknon-containing genomic loci. We found multiple such loci that are differentially transcribed between healthy and diseased tissues in colorectal cancer and chronic lymphocytic leukemia. Moreover, we identified several new loci whose expression correlates with the colorectal cancer patients' overall survival. Conclusions: the primate-specific N-BLR is a novel molecular contributor to the complex mechanisms that underlie metastasis in colorectal cancer and a potential novel biomarker for this disease. The presence of a functional pyknon within N-BLR and the related finding that many more pyknon-containing genomic loci in the human genome exhibit tissue-specific and disease-specific expression suggests the possibility of an alternative class of biomarkers and therapeutic targets that are primate-specific
    corecore