46 research outputs found

    Microbiota of Minas cheese as influenced by the nisin producer Lactococcus lactis subsp. lactis GLc05

    Get PDF
    Minas cheese is a popular dairy product in Brazil that is traditionally produced using raw or pasteurized cow milk. This study proposed an alternative production of Minas cheese using raw goat milk added of a nisin producer Lactococcus lactis subsp. lactis GLc05. An in situ investigation was carried on to evaluate the interactions between the L. lactis subsp. lactis GLc05 and the autochthonous microbiota of a Minas cheese during the ripening; production of biogenic amines (BA) was assessed as a safety aspect. Minas cheese was produced in two treatments (A, by adding L. lactis subsp. lactis GLc05, and B, without adding this strain), in three independent repetitions (R1, R2, and R3). Culture dependent (direct plating) and independent (rep-PCR and PCR-DGGE) methods were employed to characterize the microbiota and to assess the possible interferences caused by L. lactis subsp. lactis GLc05. BA amounts were measured using HPLC. A significant decrease in coagulase-positive cocci was observed in the cheeses produced by adding L. lactis subsp. lactis GLc05 (cheese A). The rep-PCR and PCR-DGGE highlighted the differences in the microbiota of both cheeses, separating them into two different clusters. Lactococcus sp. was found as the main microorganism in both cheeses, and the microbiota of cheese A presented a higher number of species. High concentrations of tyramine were found in both cheeses and, at specific ripening times, the BA amounts in cheese B were significantly higher than in cheese A (p < 0.05). The interaction of nisin producer L. lactis subsp. lactis GLc05 was demonstrated in situ, by demonstration of its influence in the complex microbiota naturally present in a raw goat milk cheese and by controlling the growth of coagulase-positive cocci. L. lactis subsp. lactis GLc05 influenced also the production of BA determining their amounts in the cheeses were maintained at acceptable levels for human consumption

    Subclinical finding in the perception of tactile sensation involvement after SARS-CoV2 infection: comparison with healthy controls using Semmes–Weinstein monofilament testing

    Get PDF
    BackgroundPost-acute COVID-19 syndrome patients complain of sensory alterations, mainly positive symptoms such as paresthesia or neuropathic pain but also decreased tactile sensation. Using the Semmes–Weinstein monofilament test (SWMT), our study aims to confront recently infected SARS-CoV2 subjects with a control group.MethodsThis is a cross-sectional, single-centric study. We performed the SWMT (North Coast Medical Inc.) on 30 patients with previous SARS-CoV2 infection (COVID group) and 46 controls (control group). These patients did not present comorbidities or sensory impairment and did not take any medications. The control group tested negative for SARS-CoV2 infection since the COVID-19 pandemic; the COVID group was examined for this study after the resolution of the infection. We tested the threshold of tactile sensation of the tips of the thumb, index, and little finger of each hand, one hand at a time; the dorsum and the hypothenar regions were also tested.ResultsBoth groups presented the perception of tactile sensation within the reference value. Despite this result, subclinical changes suggestive of the involvement in peripheral sensory nerve function have been identified in the tested sites in the COVID group compared to the control group. The overall mean target force (grams) was higher in the COVID group than in the control group: 27 (7) vs. 19 (10) mg, p &lt; 0.001.ConclusionControls and the COVID group infection had normal tactile sensation thresholds. However, the COVID group presented a higher threshold than the control group, suggesting a possible subclinical perception of tactile sensation involvement of A-beta nerve fibers

    Approximating Shapes with Standard and Custom 3D Printed LEGO Bricks

    No full text
    In this paper, we present a work-in-progress aimed at developing a pipeline for the fabrication of shapes reproducing digital models with a combination of standard LEGO bricks and 3D printed custom elements. The pipeline starts searching for the ideal alignment of the 3D model with the brick grid. It then employs a novel approach for shape "legolization" using a outside-in heuristic to limit critical configuration, and separates an external shell and an internal part. Finally, it exploits shape booleans to create the external custom parts to be 3D printed
    corecore