700 research outputs found

    Hollow Fiber and Nanofiber Membranes in Bioartificial Liver and Neuronal Tissue Engineering.

    Get PDF
    To date, the creation of biomimetic devices for the regeneration and repair of injured or diseased tissues and organs remains a crucial challenge in tissue engineering. Membrane technology offers advanced approaches to realize multifunctional tools with permissive environments well-controlled at molecular level for the development of functional tissues and organs. Membranes in fiber configuration with precisely controlled, tunable topography, and physical, biochemical, and mechanical cues, can direct and control the function of different kinds of cells toward the recovery from disorders and injuries. At the same time, fiber tools also provide the potential to model diseases in vitro for investigating specific biological phenomena as well as for drug testing. The purpose of this review is to present an overview of the literature concerning the development of hollow fibers and electrospun fiber membranes used in bioartificial organs, tissue engineered constructs, and in vitro bioreactors. With the aim to highlight the main biomedical applications of fiber-based systems, the first part reviews the fibers for bioartificial liver and liver tissue engineering with special attention to their multifunctional role in the long-term maintenance of specific liver functions and in driving hepatocyte differentiation. The second part reports the fiber-based systems used for neuronal tissue applications including advanced approaches for the creation of novel nerve conduits and in vitro models of brain tissue. Besides presenting recent advances and achievements, this work also delineates existing limitations and highlights emerging possibilities and future prospects in this field

    Two-photon excitation of FluoVolt allows improved interrogation of transmural electrophysiological function in the intact mouse heart

    Get PDF
    Background and aims: Two-photon excitation of voltage sensitive dyes (VSDs) can measure rapidly changing electrophysiological signals deep within intact cardiac tissue with improved three-dimensional resolution along with reduced photobleaching and photo-toxicity compared to conventional confocal microscopy. Recently, a category of VSDs has emerged which records membrane potentials by photo-induced electron transfer. FluoVolt is a novel VSD in this category which promises fast response and a 25% fractional change in fluorescence per 100 mV, making it an attractive optical probe for action potential (AP) recordings within intact cardiac tissue. The purpose of this study was to characterize the fluorescent properties of FluoVolt as well as its utility for deep tissue imaging. Methods: Discrete tissue layers throughout the left ventricular wall of isolated perfused murine hearts loaded with FluoVolt or di-4-ANEPPS were sequentially excited with two-photon microscopy. Results: FluoVolt loaded hearts suffered significantly fewer episodes of atrio-ventricular block compared to di-4-ANEPPS loaded hearts, indicating comparatively low toxicity of FluoVolt in the intact heart. APs recorded with FluoVolt were characterized by a lower signal-to-noise ratio and a higher dynamic range compared to APs recorded with di-4-ANEPPS. Although both depolarization and repolarization parameters were similar in APs recorded with either dye, FluoVolt allowed deeper tissue excitation with improved three-dimensional resolution due to reduced out-of-focus fluorescence generation under two-photon excitation. Conclusion: Our results demonstrate several advantages of two-photon excitation of FluoVolt in functional studies in intact heart preparations, including reduced toxicity and improved fluorescent properties

    Growing Teratoma Syndrome: An Asian Woman with Immature Teratoma of Left Ovary After Chemotherapy

    Get PDF
    International audienceAims: Loss-of-function of the cardiac sodium channel NaV1.5 is a common feature of Brugada syndrome. Arrhythmias arise preferentially from the right ventricle (RV) despite equivalent NaV1.5 downregulation in the left ventricle (LV). The reasons for increased RV sensitivity to NaV1.5 loss-of-function mutations remain unclear. Because ventricular electrical activation occurs predominantly in the transmural axis, we compare RV and LV transmural electrophysiology to determine the underlying cause of the asymmetrical conduction abnormalities in Scn5a haploinsufficient mice (Scn5a+/-). Methods and results: Optical mapping and two-photon microscopy in isolated-perfused mouse hearts demonstrated equivalent depression of transmural conduction velocity (CV) in the LV and RV of Scn5a+/- vs. wild-type littermates. Only RV transmural conduction was further impaired when challenged with increased pacing frequencies. Epicardial dispersion of activation and beat-to-beat variation in activation time were increased only in the RV of Scn5a+/- hearts. Analysis of confocal and histological images revealed larger intramural clefts between cardiomyocyte layers in the RV vs. LV, independent of genotype. Acute sodium current inhibition in wild type hearts using tetrodotoxin reproduced beat-to-beat activation variability and frequency-dependent CV slowing in the RV only, with the LV unaffected. The influence of clefts on conduction was examined using a two-dimensional monodomain computational model. When peak sodium channel conductance was reduced to 50% of normal the presence of clefts between cardiomyocyte layers reproduced the activation variability and conduction phenotype observed experimentally. Conclusions: Normal structural heterogeneities present in the RV are responsible for increased vulnerability to conduction slowing in the presence of reduced sodium channel function. Heterogeneous conduction slowing seen in the RV will predispose to functional block and the initiation of re-entrant ventricular arrhythmias

    Characterization of electrical activity in post-myocardial infarction scar tissue in rat hearts using multiphoton microscopy.

    Get PDF
    Background: The origin of electrical behavior in post-myocardial infarction scar tissue is still under debate. This study aims to examine the extent and nature of the residual electrical activity within a stabilized ventricular infarct scar. Methods and Results: An apical infarct was induced in the left ventricle of Wistar rats by coronary artery occlusion. Five weeks post-procedure, hearts were Langendorff-perfused, and optically mapped using di-4-ANEPPS. Widefield imaging of optical action potentials (APs) on the left ventricular epicardial surface revealed uniform areas of electrical activity in both normal zone (NZ) and infarct border zone (BZ), but only limited areas of low-amplitude signals in the infarct zone (IZ). 2-photon (2P) excitation of di-4-ANEPPS and Fura-2/AM at discrete layers in the NZ revealed APs and Ca2+ transients (CaTs) to 500-600 μm below the epicardial surface. 2P imaging in the BZ revealed superficial connective tissue structures lacking APs or CaTs. At depths greater than approximately 300 μm, myocardial structures were evident that supported normal APs and CaTs. In the IZ, although 2P imaging did not reveal clear myocardial structures, low-amplitude AP signals were recorded at discrete layers. No discernible Ca2+ signals could be detected in the IZ. AP rise times in BZ were slower than NZ (3.50 ± 0.50 ms vs. 2.23 ± 0.28 ms) and further slowed in IZ (9.13 ± 0.56 ms). Widefield measurements of activation delay between NZ and BZ showed negligible difference (3.37 ± 1.55 ms), while delay values in IZ showed large variation (11.88 ± 9.43 ms). Conclusion: These AP measurements indicate that BZ consists of an electrically inert scar above relatively normal myocardium. Discrete areas/layers of IZ displayed entrained APs with altered electrophysiology, but the structure of this tissue remains to be elucidated

    Predicting Dihydropyrimidine Dehydrogenase Deficiency and Related 5-Fluorouracil Toxicity. Opportunities and Challenges of DPYD Exon Sequencing and the Role of Phenotyping Assays

    Get PDF
    Deficiency of dihydropyrimidine dehydrogenase (DPD), encoded by the DPYD gene, is associated with severe toxicity induced by the anti-cancer drug 5-Fluorouracil (5-FU). DPYD genotyping of four recommended polymorphisms is widely used to predict toxicity, yet their prediction power is limited. Increasing availability of next generation sequencing (NGS) will allow us to screen rare variants, predicting a larger fraction of DPD deficiencies. Genotype−phenotype correlations were investigated by performing DPYD exon sequencing in 94 patients assessed for DPD deficiency by the 5-FU degradation rate (5-FUDR) assay. Association of common variants with 5-FUDR was analyzed with the SNPStats software. Functional interpretation of rare variants was performed by in-silico analysis (using the HSF system and PredictSNP) and literature review. A total of 23 rare variants and 8 common variants were detected. Among common variants, a significant association was found between homozygosity for the rs72728438 (c.1974+75A>G) and decreased 5-FUDR. Haplotype analysis did not detect significant associations with 5-FUDR. Overall, in our sample cohort, NGS exon sequencing allowed us to explain 42.5% of the total DPD deficiencies. NGS sharply improves prediction of DPD deficiencies, yet a broader collection of genotype−phenotype association data is needed to enable the clinical use of sequencing data

    Double porous poly (Ɛ-caprolactone)/chitosan membrane scaffolds as niches for human mesenchymal stem cells

    Get PDF
    In this paper, we developed membrane scaffolds to mimic the biochemical and biophysical properties of human mesenchymal stem cell (hMSC) niches to help direct self-renewal and proliferation providing to cells all necessary chemical, mechanical and topographical cues. The strategy was to create three-dimensional membrane scaffolds with double porosity, able to promote the mass transfer of nutrients and to entrap cells. We developed poly (Ɛ-caprolactone) (PCL)/chitosan (CHT) blend membranes consisting of double porous morphology: (i) surface macrovoids (big pores) which could be easily accessible for hMSCs invasion and proliferation; (ii) interconnected microporous network to transfer essential nutrients, oxygen, growth factors between the macrovoids and throughout the scaffolds. We varied the mean macrovoid size, effective surface area and surface morphology by varying the PCL/CHT blend composition (100/0, 90/10, 80/20, 70/30). Membranes exhibited macrovoids connected with each other through a microporous network; macrovoids size increased by increasing the CHT wt%. Cells adhered on the surfaces of PCL/CHT 100/0 and PCL/CHT 90/10 membranes, that are characterized by a high effective surface area and small macrovoids while PCL/CHT 80/20 and PCL/CHT 70/30 membranes with large macrovoids and low effective surface area entrapped cells inside macrovoids. The scaffolds were able to create a permissive environment for hMSC adhesion and invasion promoting viability and metabolism, which are important for the maintenance of cell integrity. We found a relationship between hMSCs proliferation and oxygen uptake rate with surface mean macrovoid size and effective surface area. The macrovoids enabled the cell invasion into the membrane and the microporosity ensured an adequate diffusive mass transfer of nutrients and metabolites, which are essential for the long-term maintenance of cell viability and functions

    Monitoring the December 2015 summit eruptions of Mt. Etna (Italy): Implications on eruptive dynamics

    Get PDF
    A lengthy period of eruptive activity fromthe summit craters ofMt. Etna started in January 2011. It culminated in early December 2015 with a spectacular sequence of intense eruptive events involving all four summit craters (Voragine, Bocca Nuova,NewSoutheast Crater, and Northeast Crater). The activity consisted of high eruption columns, Strombolian explosions, lava flows andwidespread ash falls that repeatedly interferedwith air traffic. The most powerful episode occurred on 3 December 2015 from the Voragine. After three further potent episodes fromthe Voragine, activity shifted to the NewSoutheast Crater on 6 December 2015, where Strombolian activity and lava flow emission lasted for two days and were fed by the most primitive magma of the study period. Activity once more shifted to the Northeast Crater, where ash emission and weak Strombolian activity took place for several days. Sporadic ash emissions from all craters continued until 18 December, when all activity ceased. Although resembling the summit eruptions of 1998–1999, which also involved all four summit craters, thismultifaceted eruptive sequence occurred in an exceptionally short time window of less than three days, unprecedented in the recent activity of Mt. Etna. It also produced important morphostructural changes of the summit area with the coalescence of Voragine and Bocca Nuova in a single large crater, the “Central Crater”, reproducing themorphological setting of the summit cone before the formation of Bocca Nuova in 1968. The December 2015 volcanic crisis was followed closely by the staff of the Etna Observatory to monitor the on-going activity and forecast its evolution, in accordance with protocols agreed with the Italian Civil Protection Department.Published53-695V. Dinamica dei processi eruttivi e post-eruttiviJCR Journa
    corecore