16,300 research outputs found

    Job displacement among single mothers: effects on children's outcomes in young adulthood.

    Get PDF
    Given the recent era of economic upheaval, studying the effects of job displacement has seldom been so timely and consequential. Despite a large literature associating displacement with worker well-being, relatively few studies focus on the effects of parental displacement on child well-being, and fewer still focus on implications for children of single-parent households. Moreover, notwithstanding a large literature on the relationship between single motherhood and children's outcomes, research on intergenerational effects of involuntary employment separations among single mothers is limited. Using 30 years of nationally representative panel data and propensity score matching methods, the authors find significant negative effects of job displacement among single mothers on children's educational attainment and social-psychological well-being in young adulthood. Effects are concentrated among older children and children whose mothers had a low likelihood of displacement, suggesting an important role for social stigma and relative deprivation in the effects of socioeconomic shocks on child well-being

    Real-time growth rate for general stochastic SIR epidemics on unclustered networks

    Get PDF
    Networks have become an important tool for infectious disease epidemiology. Most previous theoretical studies of transmission network models have either considered simple Markovian dynamics at the individual level, or have focused on the invasion threshold and final outcome of the epidemic. Here, we provide a general theory for early real-time behaviour of epidemics on large configuration model networks (i.e. static and locally unclustered), in particular focusing on the computation of the Malthusian parameter that describes the early exponential epidemic growth. Analytical, numerical and Monte-Carlo methods under a wide variety of Markovian and non-Markovian assumptions about the infectivity profile are presented. Numerous examples provide explicit quantification of the impact of the network structure on the temporal dynamics of the spread of infection and provide a benchmark for validating results of large scale simulations.Comment: 45 pages, 8 figures, submitted to Mathematical Biosciences on 29/11/2014; Version 2: resubmitted on 15/04/2015; accepted on 17/04/2015. Changes: better explanations in introduction; restructured section 3.3 (3.3.3 added); section 6.3.1 added; more precise terminology; typos correcte

    Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

    Full text link
    Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.Comment: 11 pages, 9 figures, v3 with added reference

    CCAT

    Get PDF
    Star formation, which drives the evolution of baryonic matter in the universe, occurs in the densest regions of the interstellar medium. As a result much of the emergent short wavelength radiation, UV to near IR, is absorbed by intervening dust and reradiated at longer wavelengths, far IR and subillimeter. Indeed the energy density of post primordial extragalactic light is divided equally between these short and long wavelengths, indicating equal amounts of radiation have passed through dusty and optically transparent environments over cosmic time. Comprehensive understanding of the processes of galaxy, star, and planetary formation requires, therefore, high sensitivity and high angular resolution observations, particularly surveys, in the far IR and submillimeter. A consortium led by Cornell and Caltech with JPL is now jointly planning the construction of a 25 m diameter telescope for submillimeter astronomy on a high mountain in northern Chile. This CCAT will combine high sensitivity, a wide field of view, and a broad wavelength range to provide an unprecedented capability for deep, large area, multi-color submillimeter surveys to complement narrow field, high resolution studies with ALMA. CCAT observations will address fundamental themes in contemporary astronomy, notably the formation and evolution of galaxies, the nature of the dark matter and dark energy that comprise most of the content of the universe, the formation of stars and planets, the conditions in circumstellar disks, and the conditions during the early history of the Solar system. The candidate CCAT site, at 5600m in northern Chile, enjoys superb observing conditions. To accommodate large format bolometer cameras, CCAT is designed with a 20 arcmin field of view. CCAT will incorporate closed loop active control of its segmented primary mirror to maintain a half wavefront error of 10 μm rms or less for the entire telescope. Instrumentation under consideration includes both short (650 μm–200 μm) and long (2 mm–750 μm) wavelength bolometer cameras, direct detection spectrometers, and heterodyne receiver arrays. In addition to Cornell and Caltech with JPL, the University of Colorado, the Universities of British Columbia and of Waterloo, the UK Astronomy Technology Centre on behalf of the UK community, and the Universities of Cologne and of Bonn have joined the CCAT consortium. When complete, CCAT will be the largest and most sensitive facility of its class as well as the highest altitude astronomical facility on Earth

    Hamilton's Turns for the Lorentz Group

    Full text link
    Hamilton in the course of his studies on quaternions came up with an elegant geometric picture for the group SU(2). In this picture the group elements are represented by ``turns'', which are equivalence classes of directed great circle arcs on the unit sphere S2S^2, in such a manner that the rule for composition of group elements takes the form of the familiar parallelogram law for the Euclidean translation group. It is only recently that this construction has been generalized to the simplest noncompact group SU(1,1)=Sp(2,R)=SL(2,R)SU(1,1) = Sp(2, R) = SL(2,R), the double cover of SO(2,1). The present work develops a theory of turns for SL(2,C)SL(2,C), the double and universal cover of SO(3,1) and SO(3,C)SO(3,C), rendering a geometric representation in the spirit of Hamilton available for all low dimensional semisimple Lie groups of interest in physics. The geometric construction is illustrated through application to polar decomposition, and to the composition of Lorentz boosts and the resulting Wigner or Thomas rotation.Comment: 13 pages, Late

    Assumptions that imply quantum dynamics is linear

    Full text link
    A basic linearity of quantum dynamics, that density matrices are mapped linearly to density matrices, is proved very simply for a system that does not interact with anything else. It is assumed that at each time the physical quantities and states are described by the usual linear structures of quantum mechanics. Beyond that, the proof assumes only that the dynamics does not depend on anything outside the system but must allow the system to be described as part of a larger system. The basic linearity is linked with previously established results to complete a simple derivation of the linear Schrodinger equation. For this it is assumed that density matrices are mapped one-to-one onto density matrices. An alternative is to assume that pure states are mapped one-to-one onto pure states and that entropy does not decrease.Comment: 10 pages. Added references. Improved discussion of equations of motion for mean values. Expanded Introductio

    Distinguishability of infinite groups and graphs

    Get PDF
    The distinguishing number of a group G acting faithfully on a set V is the least number of colors needed to color the elements of V so that no non-identity element of the group preserves the coloring. The distinguishing number of a graph is the distinguishing number of its automorphism group acting on its vertex set. A connected graph Gamma is said to have connectivity 1 if there exists a vertex alpha \in V\Gamma such that Gamma \setminus \{\alpha\} is not connected. For alpha \in V, an orbit of the point stabilizer G_\alpha is called a suborbit of G. We prove that every nonnull, primitive graph with infinite diameter and countably many vertices has distinguishing number 2. Consequently, any nonnull, infinite, primitive, locally finite graph is 2-distinguishable; so, too, is any infinite primitive permutation group with finite suborbits. We also show that all denumerable vertex-transitive graphs of connectivity 1 and all Cartesian products of connected denumerable graphs of infinite diameter have distinguishing number 2. All of our results follow directly from a versatile lemma which we call The Distinct Spheres Lemma

    Concept design of a fast sail assisted feeder container ship

    No full text
    An environmentally sustainable fast sail-assisted feeder-container ship concept, with a maximum speed of 25 knots, has been developed for the 2020 South East Asian and Caribbean container markets. The use of low-carbon and zero-sulphur fuel (liquefied natural gas) and improvements in operational efficiency (cargo handling and scheduling) mean predicted Green house gas emissions should fall by 42% and 40% in the two selected operational regions. The adoption of a Multi-wing sail system reduces power requirement by up to 6% at the lower ship speed of 15 knots. The predicted daily cost savings are respectively 27% and 33% in South East Asian and the Caribbean regions.Two hull forms with a cargo capacity of 1270TEU utilising different propulsion combinations were initially developed to meet operational requirements. Analysis & tank testing of different hydrodynamic phenomena has enabled identification of efficiency gains for each design. The final propulsion chosen is a contra-rotating podded drive arrangement. Wind tunnel testing improved Multi-wing sail performance by investigating wing spacing, wing stagger and sail-container interactions. The associated lift coefficient was increased by 32%. Whilst savings in sail-assisted power requirement are lower than initially predicted an unexpected identified benefit was motion damping.The fast feeder-container ship is a proposed as a viable future method of container transhipment

    Na(V)1.5 sodium channel window currents contribute to spontaneous firing in olfactory sensory neurons

    Full text link
    Olfactory sensory neurons (OSNs) fire spontaneously as well as in response to odor; both forms of firing are physiologically important. We studied voltage-gated Na+ channels in OSNs to assess their role in spontaneous activity. Whole cell patch-clamp recordings from OSNs demonstrated both tetrodotoxin-sensitive and tetrodotoxin-resistant components of Na+ current. RT-PCR showed mRNAs for five of the nine different Na+ channel α-subunits in olfactory tissue; only one was tetrodotoxin resistant, the so-called cardiac subtype NaV1.5. Immunohistochemical analysis indicated that NaV1.5 is present in the apical knob of OSN dendrites but not in the axon. The NaV1.5 channels in OSNs exhibited two important features: 1) a half-inactivation potential near −100 mV, well below the resting potential, and 2) a window current centered near the resting potential. The negative half-inactivation potential renders most NaV1.5 channels in OSNs inactivated at the resting potential, while the window current indicates that the minor fraction of noninactivated NaV1.5 channels have a small probability of opening spontaneously at the resting potential. When the tetrodotoxin-sensitive Na+ channels were blocked by nanomolar tetrodotoxin at the resting potential, spontaneous firing was suppressed as expected. Furthermore, selectively blocking NaV1.5 channels with Zn2+ in the absence of tetrodotoxin also suppressed spontaneous firing, indicating that NaV1.5 channels are required for spontaneous activity despite resting inactivation. We propose that window currents produced by noninactivated NaV1.5 channels are one source of the generator potentials that trigger spontaneous firing, while the upstroke and propagation of action potentials in OSNs are borne by the tetrodotoxin-sensitive Na+ channel subtypes.This work was aided by support from Boston University, the Rocky Mountain Taste and Smell Center Core for Cellular Visualization and Analysis [National Institute on Deafness and Other Communication Disorders (NIDCD) P30 DC-04657; D. Restrepo, principal investigator], and NIDCD Grants DC-04863 to V. Dionne and DC-006070 to D. Restrepo and T. E. Finger. (Boston University; P30 DC-04657 - Rocky Mountain Taste and Smell Center Core for Cellular Visualization and Analysis [National Institute on Deafness and Other Communication Disorders (NIDCD)]; DC-04863 - Rocky Mountain Taste and Smell Center Core for Cellular Visualization and Analysis [National Institute on Deafness and Other Communication Disorders (NIDCD)]; DC-006070 - Rocky Mountain Taste and Smell Center Core for Cellular Visualization and Analysis [National Institute on Deafness and Other Communication Disorders (NIDCD)])https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122723/Accepted manuscrip
    corecore