981 research outputs found
Recommended from our members
Variational approach in weighted Sobolev spaces to scattering by unbounded rough surfaces
We consider the problem of scattering of time harmonic acoustic waves by an unbounded sound soft surface which is assumed to lie within a finite distance of some plane. The paper is concerned with the study of an equivalent variational formulation of this problem set in a scale of weighted Sobolev spaces. We prove well-posedness of this variational formulation in an energy space with weights which extends previous results in the unweighted setting [S. Chandler-Wilde and P. Monk, SIAM J. Math. Anal., 37 (2005), pp. 598–618] to more general inhomogeneous terms in the Helmholtz equation. In particular, in the two-dimensional case, our approach covers the problem of plane wave incidence, whereas in the three-dimensional case, incident spherical and cylindrical waves can be treated. As a further application of our results, we analyze a finite section type approximation, whereby the variational problem posed on an infinite layer is approximated by a variational problem on a bounded region
Limit operators, collective compactness, and the spectral theory of infinite matrices
In the first half of this memoir we explore the interrelationships between the abstract theory of limit operators (see e.g. the recent monographs of Rabinovich, Roch and Silbermann (2004) and Lindner (2006)) and the concepts and results of the generalised collectively compact operator theory introduced by Chandler-Wilde and Zhang (2002). We build up to results obtained by applying this generalised collectively compact operator theory to the set of limit operators of an operator (its operator spectrum). In the second half of this memoir we study bounded linear operators on the generalised sequence space , where and is some complex Banach space. We make what seems to be a more complete study than hitherto of the connections between Fredholmness, invertibility, invertibility at infinity, and invertibility or injectivity of the set of limit operators, with some emphasis on the case when the operator is a locally compact perturbation of the identity. Especially, we obtain stronger results than previously known for the subtle limiting cases of and . Our tools in this study are the results from the first half of the memoir and an exploitation of the partial duality between and and its implications for bounded linear operators which are also continuous with respect to the weaker topology (the strict topology) introduced in the first half of the memoir. Results in this second half of the memoir include a new proof that injectivity of all limit operators (the classic Favard condition) implies invertibility for a general class of almost periodic operators, and characterisations of invertibility at infinity and Fredholmness for operators in the so-called Wiener algebra. In two final chapters our results are illustrated by and applied to concrete examples. Firstly, we study the spectra and essential spectra of discrete Schrödinger operators (both self-adjoint and non-self-adjoint), including operators with almost periodic and random potentials. In the final chapter we apply our results to integral operators on
Recommended from our members
Boundary integral equations on unbounded rough surfaces: Fredholmness and the finite section method
We consider a class of boundary integral equations that arise in the study of strongly elliptic BVPs in unbounded domains of the form where is a sufficiently smooth bounded and continuous function. A number of specific problems of this type, for example acoustic scattering problems, problems involving elastic waves, and problems in potential theory, have been reformulated as second kind integral equations
in the space of bounded, continuous functions. Having recourse to the so-called limit operator method, we address two questions for the operator under consideration, with an emphasis on the function space setting . Firstly, under which conditions is a Fredholm operator, and, secondly, when is the finite section method applicable to
Recommended from our members
Boundary integral methods in high frequency scattering
In this article we review recent progress on the design, analysis and implementation of numerical-asymptotic boundary integral methods for the computation of frequency-domain acoustic scattering in a homogeneous unbounded medium by a bounded obstacle. The main aim of the methods is to allow computation of scattering at arbitrarily high frequency with finite computational resources
On the Spectra and Pseudospectra of a Class of Non-Self-Adjoint Random Matrices and Operators
In this paper we develop and apply methods for the spectral analysis of
non-self-adjoint tridiagonal infinite and finite random matrices, and for the
spectral analysis of analogous deterministic matrices which are pseudo-ergodic
in the sense of E.B.Davies (Commun. Math. Phys. 216 (2001), 687-704). As a
major application to illustrate our methods we focus on the "hopping sign
model" introduced by J.Feinberg and A.Zee (Phys. Rev. E 59 (1999), 6433-6443),
in which the main objects of study are random tridiagonal matrices which have
zeros on the main diagonal and random 's as the other entries. We
explore the relationship between spectral sets in the finite and infinite
matrix cases, and between the semi-infinite and bi-infinite matrix cases, for
example showing that the numerical range and -norm \eps-pseudospectra
(\eps>0, ) of the random finite matrices converge almost
surely to their infinite matrix counterparts, and that the finite matrix
spectra are contained in the infinite matrix spectrum . We also propose
a sequence of inclusion sets for which we show is convergent to
, with the th element of the sequence computable by calculating
smallest singular values of (large numbers of) matrices. We propose
similar convergent approximations for the 2-norm \eps-pseudospectra of the
infinite random matrices, these approximations sandwiching the infinite matrix
pseudospectra from above and below
Recommended from our members
Wave-number-explicit bounds in time-harmonic scattering
In this paper we consider the problem of scattering of time-harmonic acoustic waves by a bounded sound soft obstacle in two and three dimensions, studying dependence on the wave number in two classical formulations of this problem. The first is the standard variational/weak formulation in the part of the exterior domain contained in a large sphere, with an exact Dirichletto-Neumann map applied on the boundary. The second formulation is as a second kind boundary integral equation in which the solution is sought as a combined single- and double-layer potential. For the variational formulation we obtain, in the case when the obstacle is starlike, explicit upper and lower bounds which show that the inf-sup constant decreases like k −1 as the wave number k increases. We also give an example where the obstacle is not starlike and the inf-sup constant decreases at least as fast as k −2. For the boundary integral equation formulation, if the boundary is also Lipschitz and piecewise smooth, we show that the norm of the inverse boundary integral operator is bounded independently of k if the coupling parameter is chosen correctly. The methods we use also lead to explicit bounds on the solution of the scattering problem in the energy norm when the obstacle is starlike in which the dependence of the norm of the solution on the wave number and on the geometry are made explicit
Recommended from our members
On asymptotic behavior at infinity and the finite section method for integral equations on the half-line
e consider integral equations on the half-line of the form and the finite section approximation to x obtained by replacing the infinite limit of integration by the finite limit β. We establish conditions under which, if the finite section method is stable for the original integral equation (i.e. exists and is uniformly bounded in the space of bounded continuous functions for all sufficiently large β), then it is stable also for a perturbed equation in which the kernel k is replaced by k + h. The class of perturbations allowed includes all compact and some non-compact perturbations of the integral operator. Using this result we study the stability and convergence of the finite section method in the space of continuous functions x for which ()()()=−∫∞dttxt,sk)s(x0()syβxβx()sxsp+1 is bounded. With the additional assumption that ()(tskt,sk−≤ where ()()(),qsomefor,sassOskandRLkq11>+∞→=∈− we show that the finite-section method is stable in the weighted space for ,qp≤≤0 provided it is stable on the space of bounded continuous functions. With these results we establish error bounds in weighted spaces for x - xβ and precise information on the asymptotic behaviour at infinity of x. We consider in particular the case when the integral operator is a perturbation of a Wiener-Hopf operator and illustrate this case with a Wiener-Hopf integral equation arising in acoustics
Recommended from our members
On asymptotic behavior at infinity and the finite section method for integral equations on the half-line
e consider integral equations on the half-line of the form and the finite section approximation to x obtained by replacing the infinite limit of integration by the finite limit β. We establish conditions under which, if the finite section method is stable for the original integral equation (i.e. exists and is uniformly bounded in the space of bounded continuous functions for all sufficiently large β), then it is stable also for a perturbed equation in which the kernel k is replaced by k + h. The class of perturbations allowed includes all compact and some non-compact perturbations of the integral operator. Using this result we study the stability and convergence of the finite section method in the space of continuous functions x for which ()()()=−∫∞dttxt,sk)s(x0()syβxβx()sxsp+1 is bounded. With the additional assumption that ()(tskt,sk−≤ where ()()(),qsomefor,sassOskandRLkq11>+∞→=∈− we show that the finite-section method is stable in the weighted space for ,qp≤≤0 provided it is stable on the space of bounded continuous functions. With these results we establish error bounds in weighted spaces for x - xβ and precise information on the asymptotic behaviour at infinity of x. We consider in particular the case when the integral operator is a perturbation of a Wiener-Hopf operator and illustrate this case with a Wiener-Hopf integral equation arising in acoustics
Recommended from our members
The PML for rough surface scattering
In this paper we investigate the use of the perfectly matched layer (PML) to truncate a time harmonic rough
surface scattering problem in the direction away from the scatterer. We prove existence and uniqueness of the solution of the truncated problem as well as an error estimate depending on the thickness and composition of the layer. This global error estimate predicts a linear rate of convergence (under some conditions on the relative size of the real and imaginary parts of the PML function) rather than the usual exponential rate. We then consider scattering by a half-space and show that the solution
of the PML truncated problem converges globally at most quadratically (up to logarithmic factors), providing support for our general theory. However we also prove exponential convergence on compact subsets. We continue by proposing an iterative correction method for the PML truncated problem and, using our estimate for the PML approximation, prove convergence of this method. Finally we provide some numerical results in 2D.(C) 2008 IMACS. Published by Elsevier B.V. All rights reserved
- …