153 research outputs found

    The mouse anterior chamber angle and trabecular meshwork develop without cell death

    Get PDF
    BACKGROUND: The iridocorneal angle forms in the mammalian eye from undifferentiated mesenchyme between the root of the iris and cornea. A major component is the trabecular meshwork, consisting of extracellular matrix organized into a network of beams, covered in trabecular endothelial cells. Between the beams, channels lead to Schlemm's canal for the drainage of aqueous humor from the eye into the blood stream. Abnormal development of the iridocorneal angle that interferes with ocular fluid drainage can lead to glaucoma in humans. Little is known about the precise mechanisms underlying angle development. There are two main hypotheses. The first proposes that morphogenesis involves mainly cell differentiation, matrix deposition and assembly of the originally continuous mesenchymal mass into beams, channels and Schlemm's canal. The second, based primarily on rat studies, proposes that cell death and macrophages play an important role in forming channels and beams. Mice provide a potentially useful model to understand the origin and development of angle structures and how defective development leads to glaucoma. Few studies have assessed the normal structure and development of the mouse angle. We used light and electron microscopy and a cell death assay to define the sequence of events underlying formation of the angle structures in mice. RESULTS: The mouse angle structures and developmental sequence are similar to those in humans. Cell death was not detectable during the period of trabecular channel and beam formation. CONCLUSIONS: These results support morphogenic mechanisms involving organization of cellular and extracellular matrix components without cell death or atrophy

    GpnmbR150X allele must be present in bone marrow derived cells to mediate DBA/2J glaucoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Gpnmb </it>gene encodes a transmembrane protein whose function(s) remain largely unknown. Here, we assess if a mutant allele of <it>Gpnmb </it>confers susceptibility to glaucoma by altering immune functions. DBA/2J mice have a mutant <it>Gpnmb </it>gene and they develop a form of glaucoma preceded by a pigment dispersing iris disease and abnormalities of the immunosuppressive ocular microenvironment.</p> <p>Results</p> <p>We find that the <it>Gpnmb </it>genotype of bone-marrow derived cell lineages significantly influences the iris disease and the elevation of intraocular pressure. GPNMB localizes to multiple cell types, including pigment producing cells, bone marrow derived F4/80 positive antigen-presenting cells (APCs) of the iris and dendritic cells. We show that APCs of DBA/2J mice fail to induce antigen induced immune deviation (a form of tolerance) when treated with TGFβ2. This demonstrates that some of the immune abnormalities previously identified in DBA/2J mice result from intrinsic defects in APCs. However, the tested APC defects are not dependent on a mutant <it>Gpnmb </it>gene. Finally, we show that the <it>Gpnmb </it>mediated iris disease does not require elevated IL18 or mature B or T lymphocytes.</p> <p>Conclusion</p> <p>These results establish a role for <it>Gpnmb </it>in bone marrow derived lineages. They suggest that affects of <it>Gpnmb </it>on innate immunity influence susceptibility to glaucoma in DBA/2J mice.</p

    Genetic context determines susceptibility to intraocular pressure elevation in a mouse pigmentary glaucoma

    Get PDF
    BACKGROUND: DBA/2J (D2) mice develop an age-related form of glaucoma. Their eyes progressively develop iris pigment dispersion and iris atrophy followed by increased intraocular pressure (IOP) and glaucomatous optic nerve damage. Mutant alleles of the Gpnmb and Tyrp1 genes are necessary for the iris disease, but it is unknown whether alleles of other D2 gene(s) are necessary for the distinct later stages of disease. We initiated a study of congenic strains to further define the genetic requirements and disease mechanisms of the D2 glaucoma. RESULTS: To further understand D2 glaucoma, we created congenic strains of mice on the C57BL/6J (B6) genetic background. B6 double-congenic mice carrying D2-derived Gpnmb and Tyrp1 mutations develop a D2-like iris disease. B6 single-congenics with only the Gpnmb and Tyrp1 mutations develop milder forms of iris disease. Genetic epistasis experiments introducing a B6 tyrosinase mutation into the congenic strains demonstrated that both the single and double-congenic iris diseases are rescued by interruption of melanin synthesis. Importantly, our experiments analyzing mice at ages up to 27 months indicate that the B6 double-congenic mice are much less prone to IOP elevation and glaucoma than are D2 mice. CONCLUSION: As demonstrated here, the Gpnmb and Tyrp1 iris phenotypes are both individually dependent on tyrosinase function. These results support involvement of abnormal melanosomal events in the diseases caused by each gene. In the context of the inbred D2 mouse strain, the glaucoma phenotype is clearly influenced by more genes than just Gpnmb and Tyrp1. Despite the outward similarity of pigment-dispersing iris disease between D2 and the B6 double-congenic mice, the congenic mice are much less susceptible to developing high IOP and glaucoma. These new congenic strains provide a valuable new resource for further studying the genetic and mechanistic complexity of this form of glaucoma

    Absence of glaucoma in DBA/2J mice homozygous for wild-type versions of Gpnmb and Tyrp1

    Get PDF
    BACKGROUND: The glaucomas are a common but incompletely understood group of diseases. DBA/2J mice develop a pigment liberating iris disease that ultimately causes elevated intraocular pressure (IOP) and glaucoma. We have shown previously that mutations in two genes, Gpnmb and Tyrp1, initiate the iris disease. However, mechanisms involved in the subsequent IOP elevation and optic nerve degeneration remain unclear. RESULTS: Here we present new mouse strains with Gpnmb and/or Tyrp1 genes of normal function and with a DBA/2J genetic background. These strains do not develop elevated IOP or glaucoma with age. CONCLUSION: These strains provide much needed controls for studying pathogenic mechanisms of glaucoma using DBA/2J mice. Given the involvement of Gpnmb and/or Tyrp1 in areas such as immunology and tumor development and progression, these strains are also important in other research fields

    Inducible nitric oxide synthase, Nos2, does not mediate optic neuropathy and retinopathy in the DBA/2J glaucoma model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitric oxide synthase 2 (NOS2) contributes to neural death in some settings, but its role in glaucoma remains controversial. NOS2 is implicated in retinal ganglion cell degeneration in a rat glaucoma model in which intraocular pressure (IOP) is experimentally elevated by blood vessel cauterization, but not in a rat glaucoma model where IOP was elevated by injection of hypertonic saline. To test the importance of NOS2 for an inherited glaucoma, in this study we both genetically and pharmacologically decreased NOS2 activity in the DBA/2J mouse glaucoma model.</p> <p>Methods</p> <p>The expression of <it>Nos2 </it>in the optic nerve head was analyzed at both the RNA and protein levels at different stages of disease pathogenesis. To test the involvement of <it>Nos2 </it>in glaucomatous neurodegeneration, a null allele of <it>Nos2 </it>was backcrossed into DBA/2J mice and the incidence and severity of glaucoma was assessed in mice of each <it>Nos2 </it>genotype. Additionally, DBA/2J mice were treated with the NOS2 inhibitor aminoguanidine and the disease compared to untreated mice.</p> <p>Results</p> <p>Optic nerve head <it>Nos2 </it>RNA levels varied and increased during moderate but decreased at early and severe stages of disease. Despite the presence of a few NOS2 positive cells in the optic nerve head, NOS2 protein was not substantially increased during the glaucoma. Genetic deficiency of <it>Nos2 </it>or aminoguanidine treatment did not alter the IOP profile of DBA/2J mice. Additionally, neither <it>Nos2 </it>deficiency nor aminoguanidine had any detectable affect on the glaucomatous optic nerve damage.</p> <p>Conclusion</p> <p>Glaucomatous neurodegeneration in DBA/2J mice does not require NOS2 activity. Further experiments involving various models are needed to assess the general importance of <it>Nos2 </it>in glaucoma.</p

    Haploinsufficient Bmp4 ocular phenotypes include anterior segment dysgenesis with elevated intraocular pressure

    Get PDF
    BACKGROUND: Glaucoma is a blinding disease usually associated with high intraocular pressure (IOP). In some families, abnormal anterior segment development contributes to glaucoma. The genes causing anterior segment dysgenesis and glaucoma in most of these families are not identified and the affected developmental processes are poorly understood. Bone morphogenetic proteins (BMPs) participate in various developmental processes. We tested the importance of Bmp4 gene dosage for ocular development and developmental glaucoma. RESULTS: Bmp4(+/-) mice have anterior segment abnormalities including malformed, absent or blocked trabecular meshwork and Schlemm's canal drainage structures. Mice with severe drainage structure abnormalities, over 80% or more of their angle's extent, have elevated IOP. The penetrance and severity of abnormalities is strongly influenced by genetic background, being most severe on the C57BL/6J background and absent on some other backgrounds. On the C57BL/6J background there is also persistence of the hyaloid vasculature, diminished numbers of inner retinal cells, and absence of the optic nerve. CONCLUSIONS: We demonstrate that heterozygous deficiency of BMP4 results in anterior segment dysgenesis and elevated IOP. The abnormalities are similar to those in human patients with developmental glaucoma. Thus, BMP4 is a strong candidate to contribute to Axenfeld-Rieger anomaly and other developmental conditions associated with human glaucoma. BMP4 also participates in posterior segment development and wild-type levels are usually critical for optic nerve development on the C57BL/6J background. Bmp4(+/-) mice are useful for studying various components of ocular development, and may allow identification of strain specific modifiers affecting a variety of ocular phenotypes

    Unfinished Decolonisation and Globalisation

    Get PDF
    This article locates John Darwin’s work on decolonisation within an Oxbridge tradition which portrays a British world system, of which formal empire was but one part, emerging to increasing global dominance from the early nineteenth century. In this mental universe, decolonisation was the mirror image of that expanding global power. According to this point of view, it was not the sloughing off of individual territories, but rather the shrinking away of the system and of the international norms that supported it, until only its ghost remained by the end of the 1960s. The article then asks, echoing the title of Darwin’s Unfinished Empire, whether the decolonisation project is all but complete, or still ongoing. In addition, what is the responsibility of the imperial historian to engage with, inform, or indeed refrain from, contemporary debates that relate to some of these issues? The answer is twofold. On the one hand, the toolkit that the Oxbridge tradition and Darwin provide remains relevant, and also useful in thinking about contemporary issues such as China’s move towards being a global power, the United States’ declining hegemony, and some states and groups desires to rearticulate their relationship with the global. On the other hand, the decline of world systems of power needs to be recognised as just one of several types of, and approaches to, analysing ‘decolonisation’. One which cannot be allowed to ignore or marginalise the study of others, such as experience, first nations issues, the shaping of the postcolonial state, and empire legacies. The article concludes by placing the Oxbridge tradition into a broader typology of types and methodologies of decolonisation, and by asking what a new historiography of decolonisation might look like. It suggests that it would address the Oxbridge concern with the lifecycles of systems of power and their relationship to global changes, but also place them alongside, and in dialogue with, a much broader set of perspectives and analytical approaches

    Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC): Compound heterozygous mutation in the claudin 16 (CLDN16) gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC) is an autosomal recessive disorder of renal calcium and magnesium wasting frequently complicated by progressive chronic renal failure in childhood or adolescence.</p> <p>Methods</p> <p>A 7 year old boy was investigated following the findings of marked renal insufficiency and nephrocalcinosis in his 18-month old sister. He too was found to have extensive nephrocalcinosis with increased fractional excretion of magnesium: 12.4% (<4%) and hypercalciuria: 5.7 mmol (< 2.5/24 hours). He had renal impairment, partial distal renal tubular acidosis and defective urinary concentrating ability. Therapy with thiazide diuretics and magnesium supplements failed to halt the progression of the disorder. Both children subsequently underwent renal transplantation. Both children's parents are unaffected and there is one unaffected sibling.</p> <p>Results</p> <p>Mutation analysis revealed 2 heterozygous mutations in the claudin 16 gene <it>(CLDN16</it>) in both affected siblings; one missense mutation in exon 4: C646T which results in an amino acid change Arg216Cys in the second extracellular loop of <it>CLDN16 </it>and loss of function of the protein and a donor splice site mutation which changes intron 4 consensus splice site from 'GT' to 'TT' resulting in decreased splice efficiency and the formation of a truncated protein with loss of 64 amino acids in the second extracellular loop.</p> <p>Conclusion</p> <p>The mutations in <it>CLDN16 </it>in this kindred affect the second extra-cellular loop of claudin 16. The clinical course and molecular findings suggest complete loss of function of the protein in the 2 affected cases and highlight the case for molecular diagnosis in individuals with FHHNC.</p

    Datgan, a reusable software system for facile interrogation and visualization of complex transcription profiling data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We introduce Glaucoma Discovery Platform (GDP), an online environment for facile visualization and interrogation of complex transcription profiling datasets for glaucoma. We also report the availability of Datgan, the suite of scripts that was developed to construct GDP. This reusable software system complements existing repositories such as NCBI GEO or EBI ArrayExpress as it allows the construction of searchable databases to maximize understanding of user-selected transcription profiling datasets.</p> <p>Description</p> <p>Datgan scripts were used to construct both the underlying data tables and the web interface that form GDP. GDP is populated using data from a mouse model of glaucoma. The data was generated using the DBA/2J strain, a widely used mouse model of glaucoma. The DBA/2J-<it>Gpnmb<sup>+ </sup></it>strain provided a genetically matched control strain that does not develop glaucoma. We separately assessed both the retina and the optic nerve head, important tissues in glaucoma. We used hierarchical clustering to identify early molecular stages of glaucoma that could not be identified using morphological assessment of disease. GDP has two components. First, an interactive search and retrieve component provides the ability to assess gene(s) of interest in all identified stages of disease in both the retina and optic nerve head. The output is returned in graphical and tabular format with statistically significant differences highlighted for easy visual analysis. Second, a bulk download component allows lists of differentially expressed genes to be retrieved as a series of files compatible with Excel. To facilitate access to additional information available for genes of interest, GDP is linked to selected external resources including Mouse Genome Informatics and Online Medelian Inheritance in Man (OMIM).</p> <p>Conclusion</p> <p>Datgan-constructed databases allow user-friendly access to datasets that involve temporally ordered stages of disease or developmental stages. Datgan and GDP are available from <url>http://glaucomadb.jax.org/glaucoma</url>.</p
    • …
    corecore