27,242 research outputs found
PRIVATIZATION AND TRANSITION ISSUES IN RUSSIAN AGRICULTURE
Agricultural and Food Policy,
A non-pulsating neutron star in the supernova remnant HESS J1731-347 / G353.6-0.7 with a carbon atmosphere
Context: The CCO candidate in the center of the supernova remnant shell HESS
J1731-347 / G353.6-0.7 shows no pulsations and exhibits a blackbody-like X-ray
spectrum. If the absence of pulsations is interpreted as evidence for the
emitting surface area being the entire neutron star surface, the assumption of
the measured flux being due to a blackbody emission translates into a source
distance that is inconsistent with current estimates of the remnant's distance.
Aims: With the best available observational data, we extended the pulse period
search down to a sub-millisecond time scale and used a carbon atmosphere model
to describe the X-ray spectrum of the CCO and to estimate geometrical
parameters of the neutron star. Methods: To search for pulsations we used data
of an observation of the source with XMM-Newton performed in timing mode. For
the spectral analysis, we used earlier XMM-Newton observations performed in
imaging mode, which permits a more accurate treatment of the background. The
carbon atmosphere models used to fit the CCO spectrum are computed assuming
hydrostatic and radiative equilibria and take into account pressure ionization
and the presence of spectral lines. Results: Our timing analysis did not reveal
any pulsations with a pulsed fraction above ~8% down to 0.2 ms. This finding
further supports the hypothesis that the emitting surface area is the entire
neutron star surface. The carbon atmosphere model provides a good fit to the
CCO spectrum and leads to a normalization consistent with the available
distance estimates of the remnant. The derived constraints on the mass and
radius of the source are consistent with reasonable values of the neutron star
mass and radius. After the CCO in Cas A, the CCO in HESS J1731-347 / G353.6-0.7
is the second object of this class for which a carbon atmosphere model provides
a consistent description of X-ray emission.Comment: 6 pages, 5 figures, accepted for publication in
Astronomy&Astrophysic
Hamilton's Turns for the Lorentz Group
Hamilton in the course of his studies on quaternions came up with an elegant
geometric picture for the group SU(2). In this picture the group elements are
represented by ``turns'', which are equivalence classes of directed great
circle arcs on the unit sphere , in such a manner that the rule for
composition of group elements takes the form of the familiar parallelogram law
for the Euclidean translation group. It is only recently that this construction
has been generalized to the simplest noncompact group , the double cover of SO(2,1). The present work develops a theory of
turns for , the double and universal cover of SO(3,1) and ,
rendering a geometric representation in the spirit of Hamilton available for
all low dimensional semisimple Lie groups of interest in physics. The geometric
construction is illustrated through application to polar decomposition, and to
the composition of Lorentz boosts and the resulting Wigner or Thomas rotation.Comment: 13 pages, Late
Energy-efficient coding with discrete stochastic events
We investigate the energy efficiency of signaling mechanisms that transfer information by means of discrete stochastic events, such as the opening or closing of an ion channel. Using a simple model for the generation of graded electrical signals by sodium and potassium channels, we find optimum numbers of channels that maximize energy efficiency. The optima depend on several factors: the relative magnitudes of the signaling cost (current flow through channels), the fixed cost of maintaining the system, the reliability of the input, additional sources of noise, and the relative costs of upstream and downstream mechanisms. We also analyze how the statistics of input signals influence energy efficiency. We find that energy-efficient signal ensembles favor a bimodal distribution of channel activations and contain only a very small fraction of large inputs when energy is scarce. We conclude that when energy use is a significant constraint, trade-offs between information transfer and energy can strongly influence the number of signaling molecules and synapses used by neurons and the manner in which these mechanisms represent information
Impact of the various spin and orbital ordering processes on multiferroic properties of orthovanadate DyVO3
The orthovanadate DyVO3 crystal, known to exhibit multiple structural, spin
and orbital ordering transitions, is presently investigated on the basis of
magnetization, heat capacity, resistivity, dielectric and polarization
measurements. Our main result is experimental evidence for the existence of
multiferroicity below a high TC of 108 K over a wide temperature range
including different spin-orbital ordered states. The onset of ferroelectricity
is found to coincide with the antiferromagnetic C-type spin ordering transition
taking place at 108 K, which indicates that DyVO3 belongs to type II
multiferroics exhibiting a coupling between magnetism and ferroelectricity.
Some anomalies detected on the temperature dependence of electric polarization
are discussed with respect to the nature of the spin-orbital ordered states of
the V sublattice and the degree of spin alignment in the Dy sublattice. The
orthovanadates RVO3 (R = rare earth or Y) form an important new category for
searching for high-TC multiferroics.Comment: 25 pages, 7 figures, 68 references, one supplementary material,
Physical Review B, Published 23 July 201
Entanglement of macroscopically distinct states of light
Schr\"odinger's famous Gedankenexperiment has inspired multiple generations
of physicists to think about apparent paradoxes that arise when the logic of
quantum physics is applied to macroscopic objects. The development of quantum
technologies enabled us to produce physical analogues of Schr\"odinger's cats,
such as superpositions of macroscopically distinct states as well as entangled
states of microscopic and macroscopic entities. Here we take one step further
and prepare an optical state which, in Schr\"odinger's language, is equivalent
to a superposition of two cats, one of which is dead and the other alive, but
it is not known in which state each individual cat is. Specifically, the alive
and dead states are, respectively, the displaced single photon and displaced
vacuum (coherent state), with the magnitude of displacement being on a scale of
photons. These two states have significantly different photon statistics
and are therefore macroscopically distinguishable
Coherent controllers for optical-feedback cooling of quantum oscillators
We study the cooling performance of optical-feedback controllers for open
optical and mechanical resonators in the Linear Quadratic Gaussian setting of
stochastic control theory. We utilize analysis and numerical optimization of
closed-loop models based on quantum stochastic differential equations to show
that coherent control schemes, where we embed the resonator in an
interferometer to achieve all-optical feedback, can outperform optimal
measurement-based feedback control schemes in the quantum regime of low
steady-state excitation number. These performance gains are attributed to the
coherent controller's ability to simultaneously process both quadratures of an
optical probe field without measurement or loss of fidelity, and may guide the
design of coherent feedback schemes for more general problems of robust
nonlinear and robust control.Comment: 15 pages, 20 figures. Submitted to Physical Review X. Follow-up paper
to arXiv:1206.082
A generalized Pancharatnam geometric phase formula for three level systems
We describe a generalisation of the well known Pancharatnam geometric phase
formula for two level systems, to evolution of a three-level system along a
geodesic triangle in state space. This is achieved by using a recently
developed generalisation of the Poincare sphere method, to represent pure
states of a three-level quantum system in a convenient geometrical manner. The
construction depends on the properties of the group SU(3)\/ and its
generators in the defining representation, and uses geometrical objects and
operations in an eight dimensional real Euclidean space. Implications for an
n-level system are also discussed.Comment: 12 pages, Revtex, one figure, epsf used for figure insertio
- …