193 research outputs found

    The No-Binding Regime of the Pauli-Fierz Model

    Full text link
    The Pauli-Fierz model H(α)H(\alpha) in nonrelativistic quantum electrodynamics is considered. The external potential VV is sufficiently shallow and the dipole approximation is assumed. It is proven that there exist constants 0<α<α+0<\alpha_-< \alpha_+ such that H(α)H(\alpha) has no ground state for α<α|\alpha|<\alpha_-, which complements an earlier result stating that there is a ground state for α>α+|\alpha| > \alpha_+. We develop a suitable extension of the Birman-Schwinger argument. Moreover for any given δ>0\delta>0 examples of potentials VV are provided such that α+α<δ\alpha_+-\alpha_-<\delta.Comment: 18 pages and 1 figur

    Ground States in the Spin Boson Model

    Full text link
    We prove that the Hamiltonian of the model describing a spin which is linearly coupled to a field of relativistic and massless bosons, also known as the spin-boson model, admits a ground state for small values of the coupling constant lambda. We show that the ground state energy is an analytic function of lambda and that the corresponding ground state can also be chosen to be an analytic function of lambda. No infrared regularization is imposed. Our proof is based on a modified version of the BFS operator theoretic renormalization analysis. Moreover, using a positivity argument we prove that the ground state of the spin-boson model is unique. We show that the expansion coefficients of the ground state and the ground state energy can be calculated using regular analytic perturbation theory

    Mean-Field- and Classical Limit of Many-Body Schr\"odinger Dynamics for Bosons

    Full text link
    We present a new proof of the convergence of the N-particle Schroedinger dynamics for bosons towards the dynamics generated by the Hartree equation in the mean-field limit. For a restricted class of two-body interactions, we obtain convergence estimates uniform in the Planck constant , up to an exponentially small remainder. For h=0, the classical dynamics in the mean-field limit is given by the Vlasov equation.Comment: Latex 2e, 18 page

    Dynamical large deviations for a boundary driven stochastic lattice gas model with many conserved quantities

    Full text link
    We prove the dynamical large deviations for a particle system in which particles may have different velocities. We assume that we have two infinite reservoirs of particles at the boundary: this is the so-called boundary driven process. The dynamics we considered consists of a weakly asymmetric simple exclusion process with collision among particles having different velocities

    Approach to ground state and time-independent photon bound for massless spin-boson models

    Full text link
    It is widely believed that an atom interacting with the electromagnetic field (with total initial energy well-below the ionization threshold) relaxes to its ground state while its excess energy is emitted as radiation. Hence, for large times, the state of the atom+field system should consist of the atom in its ground state, and a few free photons that travel off to spatial infinity. Mathematically, this picture is captured by the notion of asymptotic completeness. Despite some recent progress on the spectral theory of such systems, a proof of relaxation to the ground state and asymptotic completeness was/is still missing, except in some special cases (massive photons, small perturbations of harmonic potentials). In this paper, we partially fill this gap by proving relaxation to an invariant state in the case where the atom is modelled by a finite-level system. If the coupling to the field is sufficiently infrared-regular so that the coupled system admits a ground state, then this invariant state necessarily corresponds to the ground state. Assuming slightly more infrared regularity, we show that the number of emitted photons remains bounded in time. We hope that these results bring a proof of asymptotic completeness within reach.Comment: 45 pages, published in Annales Henri Poincare. This archived version differs from the journal version because we corrected an inconsequential mistake in Section 3.5.1: to do this, a new paragraph was added after Lemma 3.

    Dobrushin states in the \phi^4_1 model

    Full text link
    We consider the van der Waals free energy functional in a bounded interval with inhomogeneous Dirichlet boundary conditions imposing the two stable phases at the endpoints. We compute the asymptotic free energy cost, as the length of the interval diverges, of shifting the interface from the midpoint. We then discuss the effect of thermal fluctuations by analyzing the \phi^4_1-measure with Dobrushin boundary conditions. In particular, we obtain a nontrivial limit in a suitable scaling in which the length of the interval diverges and the temperature vanishes. The limiting state is not translation invariant and describes a localized interface. This result can be seen as the probabilistic counterpart of the variational convergence of the associated excess free energy.Comment: 34 page

    Phase Segregation Dynamics in Particle Systems with Long Range Interactions I: Macroscopic Limits

    Full text link
    We present and discuss the derivation of a nonlinear non-local integro-differential equation for the macroscopic time evolution of the conserved order parameter of a binary alloy undergoing phase segregation. Our model is a d-dimensional lattice gas evolving via Kawasaki exchange dynamics, i.e. a (Poisson) nearest-neighbor exchange process, reversible with respect to the Gibbs measure for a Hamiltonian which includes both short range (local) and long range (nonlocal) interactions. A rigorous derivation is presented in the case in which there is no local interaction. In a subsequent paper (part II), we discuss the phase segregation phenomena in the model. In particular we argue that the phase boundary evolutions, arising as sharp interface limits of the family of equations derived in this paper, are the same as the ones obtained from the corresponding limits for the Cahn-Hilliard equation.Comment: amstex with macros (included in the file), tex twice, 20 page

    Stokes-vector evolution in a weakly anisotropic inhomogeneous medium

    Full text link
    Equation for evolution of the four-component Stokes vector in weakly anisotropic and smoothly inhomogeneous media is derived on the basis of quasi-isotropic approximation of the geometrical optics method, which provides consequent asymptotic solution of Maxwell equations. Our equation generalizes previous results, obtained for the normal propagation of electromagnetic waves in stratified media. It is valid for curvilinear rays with torsion and is capable to describe normal modes conversion in the inhomogeneous media. Remarkably, evolution of the Stokes vector is described by the Bargmann-Michel-Telegdi equation for relativistic spin precession, whereas the equation for the three-component Stokes vector resembles the Landau-Lifshitz equation for spin precession in ferromegnetic systems. General theory is applied for analysis of polarization evolution in a magnetized plasma. We also emphasize fundamental features of the non-Abelian polarization evolution in anisotropic inhomogeneous media and illustrate them by simple examples.Comment: 16 pages, 3 figures, to appear in J. Opt. Soc. Am.

    Current Fluctuations of the One Dimensional Symmetric Simple Exclusion Process with Step Initial Condition

    Full text link
    For the symmetric simple exclusion process on an infinite line, we calculate exactly the fluctuations of the integrated current QtQ_t during time tt through the origin when, in the initial condition, the sites are occupied with density ρa\rho_a on the negative axis and with density ρb\rho_b on the positive axis. All the cumulants of QtQ_t grow like t\sqrt{t}. In the range where QttQ_t \sim \sqrt{t}, the decay exp[Qt3/t]\exp [-Q_t^3/t] of the distribution of QtQ_t is non-Gaussian. Our results are obtained using the Bethe ansatz and several identities recently derived by Tracy and Widom for exclusion processes on the infinite line.Comment: 2 figure

    Delay Equations and Radiation Damping

    Get PDF
    Starting from delay equations that model field retardation effects, we study the origin of runaway modes that appear in the solutions of the classical equations of motion involving the radiation reaction force. When retardation effects are small, we argue that the physically significant solutions belong to the so-called slow manifold of the system and we identify this invariant manifold with the attractor in the state space of the delay equation. We demonstrate via an example that when retardation effects are no longer small, the motion could exhibit bifurcation phenomena that are not contained in the local equations of motion.Comment: 15 pages, 1 figure, a paragraph added on page 5; 3 references adde
    corecore