1,132 research outputs found
Logarithmic two-loop corrections to the Lamb shift in hydrogen
Higher order logarithmic corrections to the
hydrogen Lamb shift are calculated. The results obtained show the two-loop
contribution has a very peculiar behavior, and significantly alter the
theoretical predictions for low lying S-states.Comment: 14 pages, including 2 figures, submitted to Phys. Rev. A, updated
with minor change
Pairing Correlations in a Generalized Hubbard Model for the Cuprates
Using numerical diagonalization of a 4x4 cluster, we calculate on-site s,
extended s and d pairing correlation functions (PCF) in an effective
generalized Hubbard model for the cuprates, with nearest-neighbor correlated
hopping and next nearest-neighbor hopping t'. The vertex contributions (VC) to
the PCF are significantly enhanced, relative to the t-t'-U model. The behavior
of the PCF and their VC, and signatures of anomalous flux quantization,
indicate superconductivity in the d-wave channel for moderate doping and in the
s-wave channel for high doping and small U.Comment: 5 pages, 5 figure
Mode structure and photon number correlations in squeezed quantum pulses
The question of efficient multimode description of optical pulses is studied.
We show that a relatively very small number of nonmonochromatic modes can be
sufficient for a complete quantum description of pulses with Gaussian
quadrature statistics. For example, a three-mode description was enough to
reproduce the experimental data of photon number correlations in optical
solitons [S. Spalter et al., Phys. Rev. Lett. 81, 786 (1998)]. This approach is
very useful for a detailed understanding of squeezing properties of soliton
pulses with the main potential for quantum communication with continuous
variables. We show how homodyne detection and/or measurements of photon number
correlations can be used to determine the quantum state of the multi-mode
field. We also discuss a possible way of physical separation of the
nonmonochromatic modes.Comment: 14 pages, 4 figures; minor revisions of the text, new references; to
appear in the Phys. Rev.
Conservation Laws in Doubly Special Relativity
Motivated by various theoretical arguments that the Planck energy (Ep - 10^19
GeV) - should herald departures from Lorentz invariance, and the possibility of
testing these expectations in the not too distant future, two so-called "Doubly
Special Relativity" theories have been suggested -- the first by
Amelino-Camelia (DSR1) and the second by Smolin and Magueijo (DSR2). These
theories contain two fundamental scales -- the speed of light and an energy
usually taken to be Ep. The symmetry group is still the Lorentz group, but in
both cases acting nonlinearly on the energy-momentum sector. Accordingly, since
energy and momentum are no longer additive quantities, finding their values for
composite systems (and hence finding the correct conservation laws) is a
nontrivial matter. Ultimately it is these possible deviations from simple
linearly realized relativistic kinematics that provide the most promising
observational signal for empirically testing these models. Various
investigations have narrowed the conservation laws down to two possibilities
per DSR theory. We derive unique exact results for the energy-momentum of
composite systems in both DSR1 and DSR2, and indicate the general strategy for
arbitrary nonlinear realizations of the Lorentz group.Comment: V2: Extensive revisions: merged with gr-qc/0205093, new author added,
references added, discussion amplified. 4 pages, revtex4; V3: Revised in
response to referee comments; no physics changes; version to appear in
Physical Review
Approach to equilibrium for a class of random quantum models of infinite range
We consider random generalizations of a quantum model of infinite range
introduced by Emch and Radin. The generalization allows a neat extension from
the class of absolutely summable lattice potentials to the optimal class
of square summable potentials first considered by Khanin and Sinai and
generalised by van Enter and van Hemmen. The approach to equilibrium in the
case of a Gaussian distribution is proved to be faster than for a Bernoulli
distribution for both short-range and long-range lattice potentials. While
exponential decay to equilibrium is excluded in the nonrandom case, it is
proved to occur for both short and long range potentials for Gaussian
distributions, and for potentials of class in the Bernoulli case. Open
problems are discussed.Comment: 10 pages, no figures. This last version, to appear in J. Stat. Phys.,
corrects some minor errors and includes additional references and comments on
the relation to experiment
Solar Magnetic Carpet I: Simulation of Synthetic Magnetograms
This paper describes a new 2D model for the photospheric evolution of the
magnetic carpet. It is the first in a series of papers working towards
constructing a realistic 3D non-potential model for the interaction of
small-scale solar magnetic fields. In the model, the basic evolution of the
magnetic elements is governed by a supergranular flow profile. In addition,
magnetic elements may evolve through the processes of emergence, cancellation,
coalescence and fragmentation. Model parameters for the emergence of bipoles
are based upon the results of observational studies. Using this model, several
simulations are considered, where the range of flux with which bipoles may
emerge is varied. In all cases the model quickly reaches a steady state where
the rates of emergence and cancellation balance. Analysis of the resulting
magnetic field shows that we reproduce observed quantities such as the flux
distribution, mean field, cancellation rates, photospheric recycle time and a
magnetic network. As expected, the simulation matches observations more closely
when a larger, and consequently more realistic, range of emerging flux values
is allowed (4e16 - 1e19 Mx). The model best reproduces the current observed
properties of the magnetic carpet when we take the minimum absolute flux for
emerging bipoles to be 4e16 Mx. In future, this 2D model will be used as an
evolving photospheric boundary condition for 3D non-potential modeling.Comment: 33 pages, 16 figures, 5 gif movies included: movies may be viewed at
http://www-solar.mcs.st-and.ac.uk/~karen/movies_paper1
Spin fluctuations in the quasi-two dimensional Heisenberg ferromagnet GdI_2 studied by Electron Spin Resonance
The spin dynamics of GdI_2 have been investigated by ESR spectroscopy. The
temperature dependences of the resonance field and ESR intensity are well
described by the model for the spin susceptibility proposed by Eremin et al.
[Phys. Rev. B 64, 064425 (2001)]. The temperature dependence of the resonance
linewidth shows a maximum similar to the electrical resistance and is discussed
in terms of scattering processes between conduction electrons and localized
spins.Comment: to be published in PR
‘Engage the World’: examining conflicts of engagement in public museums
Public engagement has become a central theme in the mission statements of many cultural institutions, and in scholarly research into museums and heritage. Engagement has emerged as the go-to-it-word for generating, improving or repairing relations between museums and society at large. But engagement is frequently an unexamined term that might embed assumptions and ignore power relationships. This article describes and examines the implications of conflicting and misleading uses of ‘engagement’ in relation to institutional dealings with contested questions about culture and heritage. It considers the development of an exhibition on the Dead Sea Scrolls by the Royal Ontario Museum, Toronto in 2009 within the new institutional goal to ‘Engage the World’. The chapter analyses the motivations, processes and decisions deployed by management and staff to ‘Engage the World’, and the degree to which the museum was able to re-think its strategies of public engagement, especially in relation to subjects,issues and publics that were more controversial in nature
Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes
A chromosphere is a universal attribute of stars of spectral type later than
~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae
binaries) show extended and highly turbulent chromospheres, which develop into
slow massive winds. The associated continuous mass loss has a significant
impact on stellar evolution, and thence on the chemical evolution of galaxies.
Yet despite the fundamental importance of those winds in astrophysics, the
question of their origin(s) remains unsolved. What sources heat a chromosphere?
What is the role of the chromosphere in the formation of stellar winds? This
chapter provides a review of the observational requirements and theoretical
approaches for modeling chromospheric heating and the acceleration of winds in
single cool, evolved stars and in eclipsing binary stars, including physical
models that have recently been proposed. It describes the successes that have
been achieved so far by invoking acoustic and MHD waves to provide a physical
description of plasma heating and wind acceleration, and discusses the
challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript;
accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake
(Berlin: Springer
Can we avoid high coupling?
It is considered good software design practice to organize source code into modules and to favour within-module connections (cohesion) over between-module connections (coupling), leading to the oft-repeated maxim "low coupling/high cohesion". Prior research into network theory and its application to software systems has found evidence that many important properties in real software systems exhibit approximately scale-free structure, including coupling; researchers have claimed that such scale-free structures are ubiquitous. This implies that high coupling must be unavoidable, statistically speaking, apparently contradicting standard ideas about software structure. We present a model that leads to the simple predictions that approximately scale-free structures ought to arise both for between-module connectivity and overall connectivity, and not as the result of poor design or optimization shortcuts. These predictions are borne out by our large-scale empirical study. Hence we conclude that high coupling is not avoidable--and that this is in fact quite reasonable
- …
