24 research outputs found

    PMP and Climate Variability and Change: A Review

    Full text link
    [EN] A state-of-the-art review on the probable maximum precipitation (PMP) as it relates to climate variability and change is presented. The review consists of an examination of the current practice and the various developments published in the literature. The focus is on relevant research where the effect of climate dynamics on the PMP are discussed, as well as statistical methods developed for estimating very large extreme precipitation including the PMP. The review includes interpretation of extreme events arising from the climate system, their physical mechanisms, and statistical properties, together with the effect of the uncertainty of several factors determining them, such as atmospheric moisture, its transport into storms and wind, and their future changes. These issues are examined as well as the underlying historical and proxy data. In addition, the procedures and guidelines established by some countries, states, and organizations for estimating the PMP are summarized. In doing so, attention was paid to whether the current guidelines and research published literature take into consideration the effects of the variability and change of climatic processes and the underlying uncertainties.The authors would like to acknowledge the support of the Global Water Futures Program and the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant RGPIN-2019-06894). The fourth author acknowledges the support of the Spanish Ministry of Science and Innovation, Project TETISCHANGE (RTI2018-093717-B-100). The first author appreciates the continuous support from the Scott College of Engineering of Colorado State University.Salas, JD.; Anderson, ML.; Papalexiou, SM.; Francés, F. (2020). PMP and Climate Variability and Change: A Review. Journal of Hydrologic Engineering. 25(12):1-16. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002003S1162512Abbs, D. J. (1999). A numerical modeling study to investigate the assumptions used in the calculation of probable maximum precipitation. Water Resources Research, 35(3), 785-796. doi:10.1029/1998wr900013Alexander, G. N. (1963). Using the probability of storm transposition for estimating the frequency of rare floods. Journal of Hydrology, 1(1), 46-57. doi:10.1016/0022-1694(63)90032-5Balkema, A. A., & de Haan, L. (1974). Residual Life Time at Great Age. The Annals of Probability, 2(5). doi:10.1214/aop/1176996548Beauchamp J. 2010. “Estimation d’une PMP et d’une CMP d’un bassin versant septentional en contexte de changements climatiques.” Ph.D. dissertation École de Technologie Supérieure Université du Québec.Ben Alaya, M. A., Zwiers, F., & Zhang, X. (2018). Probable Maximum Precipitation: Its Estimation and Uncertainty Quantification Using Bivariate Extreme Value Analysis. Journal of Hydrometeorology, 19(4), 679-694. doi:10.1175/jhm-d-17-0110.1Benson M. A. 1973. “Thoughts on the design of design floods. Floods and droughts.” In Proc. 2nd Int. Symp. in Hydrology 27–33. Fort Collins CO: Water Resources Publications.Botero, B. A., & Francés, F. (2010). Estimation of high return period flood quantiles using additional non-systematic information with upper bounded statistical models. Hydrology and Earth System Sciences, 14(12), 2617-2628. doi:10.5194/hess-14-2617-2010Canadian Dam Association. 2013. “Dam safety guidelines.” Accessed August 24 2020. https://www.cda.ca/EN/Publications_Pages/Dam_Safety_Publications.aspx.Casas, M. C., Rodríguez, R., Nieto, R., & Redaño, A. (2008). The Estimation of Probable Maximum Precipitation. Annals of the New York Academy of Sciences, 1146(1), 291-302. doi:10.1196/annals.1446.003Casas, M. C., Rodríguez, R., Prohom, M., Gázquez, A., & Redaño, A. (2010). Estimation of the probable maximum precipitation in Barcelona (Spain). International Journal of Climatology, 31(9), 1322-1327. doi:10.1002/joc.2149Casas-Castillo, M. C., Rodríguez-Solà, R., Navarro, X., Russo, B., Lastra, A., González, P., & Redaño, A. (2016). On the consideration of scaling properties of extreme rainfall in Madrid (Spain) for developing a generalized intensity-duration-frequency equation and assessing probable maximum precipitation estimates. Theoretical and Applied Climatology, 131(1-2), 573-580. doi:10.1007/s00704-016-1998-0Castellarin, A., Merz, R., & Blöschl, G. (2009). Probabilistic envelope curves for extreme rainfall events. Journal of Hydrology, 378(3-4), 263-271. doi:10.1016/j.jhydrol.2009.09.030Chavan, S. R., & Srinivas, V. V. (2016). Regionalization based envelope curves for PMP estimation by Hershfield method. International Journal of Climatology, 37(10), 3767-3779. doi:10.1002/joc.4951Chen, X., & Hossain, F. (2018). Understanding Model-Based Probable Maximum Precipitation Estimation as a Function of Location and Season from Atmospheric Reanalysis. Journal of Hydrometeorology, 19(2), 459-475. doi:10.1175/jhm-d-17-0170.1Chen, X., & Hossain, F. (2019). Understanding Future Safety of Dams in a Changing Climate. Bulletin of the American Meteorological Society, 100(8), 1395-1404. doi:10.1175/bams-d-17-0150.1Chow, V. T. (1951). A general formula for hydrologic frequency analysis. Transactions, American Geophysical Union, 32(2), 231. doi:10.1029/tr032i002p00231Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. doi:10.1007/978-1-4471-3675-0COOKE, P. (1979). Statistical inference for bounds of random variables. Biometrika, 66(2), 367-374. doi:10.1093/biomet/66.2.367Cooley, D. (2009). Extreme value analysis and the study of climate change. Climatic Change, 97(1-2), 77-83. doi:10.1007/s10584-009-9627-xDawdy, D. R., & Lettenmaier, D. P. (1987). Initiative for Risk‐Based Flood Design. Journal of Hydraulic Engineering, 113(8), 1041-1051. doi:10.1061/(asce)0733-9429(1987)113:8(1041)Desa M., M. N., & Rakhecha, P. R. (2007). Probable maximum precipitation for 24-h duration over an equatorial region: Part 2-Johor, Malaysia. Atmospheric Research, 84(1), 84-90. doi:10.1016/j.atmosres.2006.06.005Dettinger, M. (2011). Climate Change, Atmospheric Rivers, and Floods in California - A Multimodel Analysis of Storm Frequency and Magnitude Changes1. JAWRA Journal of the American Water Resources Association, 47(3), 514-523. doi:10.1111/j.1752-1688.2011.00546.xDiaz A. J. K. Ishida M. L. Kavvas and M. L. Anderson. 2017. “Maximum precipitation estimation for five watersheds in the southern Sierra Nevada.” In Proc. 2017 World Environmental and Water Resources Congress 331–339. Reston VA: ASCE. https://doi.org/10.1061/9780784480618.032.Douglas, E. M., & Barros, A. P. (2003). Probable Maximum Precipitation Estimation Using Multifractals: Application in the Eastern United States. Journal of Hydrometeorology, 4(6), 1012-1024. doi:10.1175/1525-7541(2003)0042.0.co;2El Adlouni, S., Ouarda, T. B. M. J., Zhang, X., Roy, R., & Bobée, B. (2007). Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resources Research, 43(3). doi:10.1029/2005wr004545Elíasson, J. (1994). Statistical Estimates of PMP Values. Hydrology Research, 25(4), 301-312. doi:10.2166/nh.1994.0010Elíasson, J. (1997). A statistical model for extreme precipitation. Water Resources Research, 33(3), 449-455. doi:10.1029/96wr03531England, J. F., Jarrett, R. D., & Salas, J. D. (2003). Data-based comparisons of moments estimators using historical and paleoflood data. Journal of Hydrology, 278(1-4), 172-196. doi:10.1016/s0022-1694(03)00141-0Fernandes, W., Naghettini, M., & Loschi, R. (2010). A Bayesian approach for estimating extreme flood probabilities with upper-bounded distribution functions. Stochastic Environmental Research and Risk Assessment, 24(8), 1127-1143. doi:10.1007/s00477-010-0365-4Fisher, R. A., & Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Mathematical Proceedings of the Cambridge Philosophical Society, 24(2), 180-190. doi:10.1017/s0305004100015681Fontaine, T. A., & Potter, K. W. (1989). Estimating Probabilities of Extreme Rainfalls. Journal of Hydraulic Engineering, 115(11), 1562-1575. doi:10.1061/(asce)0733-9429(1989)115:11(1562)Foufoula-Georgiou, E. (1989). A probabilistic storm transposition approach for estimating exceedance probabilities of extreme precipitation depths. Water Resources Research, 25(5), 799-815. doi:10.1029/wr025i005p00799Francés, F. (1998). Using the TCEV distribution function with systematic and non-systematic data in a regional flood frequency analysis. Stochastic Hydrology and Hydraulics, 12(4), 267-283. doi:10.1007/s004770050021Frances, F., Salas, J. D., & Boes, D. C. (1994). Flood frequency analysis with systematic and historical or paleoflood data based on the two-parameter general extreme value models. Water Resources Research, 30(6), 1653-1664. doi:10.1029/94wr00154Gao, M., Mo, D., & Wu, X. (2016). Nonstationary modeling of extreme precipitation in China. Atmospheric Research, 182, 1-9. doi:10.1016/j.atmosres.2016.07.014García-Marín, A. P., Morbidelli, R., Saltalippi, C., Cifrodelli, M., Estévez, J., & Flammini, A. (2019). On the choice of the optimal frequency analysis of annual extreme rainfall by multifractal approach. Journal of Hydrology, 575, 1267-1279. doi:10.1016/j.jhydrol.2019.06.013Gilroy, K. L., & McCuen, R. H. (2012). A nonstationary flood frequency analysis method to adjust for future climate change and urbanization. Journal of Hydrology, 414-415, 40-48. doi:10.1016/j.jhydrol.2011.10.009Groisman, P. Y., Knight, R. W., & Zolina, O. G. (2013). Recent Trends in Regional and Global Intense Precipitation Patterns. Climate Vulnerability, 25-55. doi:10.1016/b978-0-12-384703-4.00501-3Gumbel, E. J. (1958). Statistics of Extremes. doi:10.7312/gumb92958Hershfield, D. M. (1965). Method for Estimating Probable Maximum Rainfall. Journal - American Water Works Association, 57(8), 965-972. doi:10.1002/j.1551-8833.1965.tb01486.xHershfield D. M. 1977. “Some tools for hydrometeorologists.” In Proc. 2nd Conf. on Hydrometeorology. Boston: American Meteorological Society.Hosking, J. R. M., & Wallis, J. R. (1997). Regional Frequency Analysis. doi:10.1017/cbo9780511529443Hosking, J. R. M., Wallis, J. R., & Wood, E. F. (1985). Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments. Technometrics, 27(3), 251-261. doi:10.1080/00401706.1985.10488049Houghton, J. C. (1978). Birth of a parent: The Wakeby Distribution for modeling flood flows. Water Resources Research, 14(6), 1105-1109. doi:10.1029/wr014i006p01105Hubert, P., Tessier, Y., Lovejoy, S., Schertzer, D., Schmitt, F., Ladoy, P., … Desurosne, I. (1993). Multifractals and extreme rainfall events. Geophysical Research Letters, 20(10), 931-934. doi:10.1029/93gl01245Hundecha, Y., St-Hilaire, A., Ouarda, T. B. M. J., El Adlouni, S., & Gachon, P. (2008). A Nonstationary Extreme Value Analysis for the Assessment of Changes in Extreme Annual Wind Speed over the Gulf of St. Lawrence, Canada. Journal of Applied Meteorology and Climatology, 47(11), 2745-2759. doi:10.1175/2008jamc1665.1Ishida, K., Kavvas, M. L., Jang, S., Chen, Z. Q., Ohara, N., & Anderson, M. L. (2015). Physically Based Estimation of Maximum Precipitation over Three Watersheds in Northern California: Atmospheric Boundary Condition Shifting. Journal of Hydrologic Engineering, 20(4), 04014052. doi:10.1061/(asce)he.1943-5584.0001026Ishida, K., Kavvas, M. L., Jang, S., Chen, Z. Q., Ohara, N., & Anderson, M. L. (2015). Physically Based Estimation of Maximum Precipitation over Three Watersheds in Northern California: Relative Humidity Maximization Method. Journal of Hydrologic Engineering, 20(10), 04015014. doi:10.1061/(asce)he.1943-5584.0001175Ishida, K., Ohara, N., Kavvas, M. L., Chen, Z. Q., & Anderson, M. L. (2018). Impact of air temperature on physically-based maximum precipitation estimation through change in moisture holding capacity of air. Journal of Hydrology, 556, 1050-1063. doi:10.1016/j.jhydrol.2016.10.008Jakob D. R. Smalley J. Meighen B. Taylor and K. Xuereb. 2008. “Climate change and probable maximum precipitation.” In Proc. Water Down Under 109–120. Melbourne Australia: Engineers Australia Causal Productions.Katz, R. W. (2012). Statistical Methods for Nonstationary Extremes. Water Science and Technology Library, 15-37. doi:10.1007/978-94-007-4479-0_2Katz, R. W., Parlange, M. B., & Naveau, P. (2002). Statistics of extremes in hydrology. Advances in Water Resources, 25(8-12), 1287-1304. doi:10.1016/s0309-1708(02)00056-8Kharin, V. V., Zwiers, F. W., Zhang, X., & Hegerl, G. C. (2007). Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model Simulations. Journal of Climate, 20(8), 1419-1444. doi:10.1175/jcli4066.1Kijko, A. (2004). Estimation of the Maximum Earthquake Magnitude, m max. Pure and Applied Geophysics, 161(8), 1655-1681. doi:10.1007/s00024-004-2531-4Kim, I.-W., Oh, J., Woo, S., & Kripalani, R. H. (2018). Evaluation of precipitation extremes over the Asian domain: observation and modelling studies. Climate Dynamics, 52(3-4), 1317-1342. doi:10.1007/s00382-018-4193-4Koutsoyiannis, D. (1999). A probabilistic view of hershfield’s method for estimating probable maximum precipitation. Water Resources Research, 35(4), 1313-1322. doi:10.1029/1999wr900002Kundzewicz, Z. W., & Stakhiv, E. Z. (2010). Are climate models «ready for prime time» in water resources management applications, or is more research needed? Hydrological Sciences Journal, 55(7), 1085-1089. doi:10.1080/02626667.2010.513211Kunkel, K. E., Karl, T. R., Easterling, D. R., Redmond, K., Young, J., Yin, X., & Hennon, P. (2013). Probable maximum precipitation and climate change. Geophysical Research Letters, 40(7), 1402-1408. doi:10.1002/grl.50334Lan, P., Lin, B., Zhang, Y., & Chen, H. (2017). Probable Maximum Precipitation Estimation Using the Revised Km-Value Method in Hong Kong. Journal of Hydrologic Engineering, 22(8), 05017008. doi:10.1061/(asce)he.1943-5584.0001517Langousis, A., Veneziano, D., Furcolo, P., & Lepore, C. (2009). Multifractal rainfall extremes: Theoretical analysis and practical estimation. Chaos, Solitons & Fractals, 39(3), 1182-1194. doi:10.1016/j.chaos.2007.06.004Leclerc, M., & Ouarda, T. B. M. J. (2007). Non-stationary regional flood frequency analysis at ungauged sites. Journal of Hydrology, 343(3-4), 254-265. doi:10.1016/j.jhydrol.2007.06.021Lee, J., Choi, J., Lee, O., Yoon, J., & Kim, S. (2017). Estimation of Probable Maximum Precipitation in Korea using a Regional Climate Model. Water, 9(4), 240. doi:10.3390/w9040240Lenderink, G., & Attema, J. (2015). A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands. Environmental Research Letters, 10(8), 085001. doi:10.1088/1748-9326/10/8/085001Lepore, C., Veneziano, D., & Molini, A. (2015). Temperature and CAPE dependence of rainfall extremes in the eastern United States. Geophysical Research Letters, 42(1), 74-83. doi:10.1002/2014gl062247López, J., & Francés, F. (2013). Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates. Hydrology and Earth System Sciences, 17(8), 3189-3203. doi:10.5194/hess-17-3189-2013Loriaux, J. M., Lenderink, G., & Siebesma, A. P. (2016). Peak precipitation intensity in relation to atmospheric conditions and large-scale forcing at midlatitudes. Journal of Geophysical Research: Atmospheres, 121(10), 5471-5487. doi:10.1002/2015jd024274Machado, M. J., Botero, B. A., López, J., Francés, F., Díez-Herrero, A., & Benito, G. (2015). Flood frequency analysis of historical flood data under stationary and non-stationary modelling. Hydrology and Earth System Sciences, 19(6), 2561-2576. doi:10.5194/hess-19-2561-2015Markonis, Y., Papalexiou, S. M., Martinkova, M., & Hanel, M. (2019). Assessment of Water Cycle Intensification Over Land using a Multisource Global Gridded Precipitation DataSet. Journal of Geophysical Research: Atmospheres, 124(21), 11175-11187. doi:10.1029/2019jd030855Martins, E. S., & Stedinger, J. R. (2000). Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research, 36(3), 737-744. doi:10.1029/1999wr900330Mejia G. and F. Villegas. 1979. “Maximum precipitation deviations in Colombia.” In Proc. 3rd Conf. on Hydrometeorology 74–76. Boston: America Meteorological Society.Merz, R., & Blöschl, G. (2008). Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information. Water Resources Research, 44(8). doi:10.1029/2007wr006744Micovic, Z., Schaefer, M. G., & Taylor, G. H. (2015). Uncertainty analysis for Probable Maximum Precipitation estimates. Journal of Hydrology, 521, 360-373. doi:10.1016/j.jhydrol.2014.12.033Mínguez, R., Méndez, F. J., Izaguirre, C., Menéndez, M., & Losada, I. J. (2010). Pseudo-optimal parameter selection of non-stationary generalized extreme value models for environmental variables. Environmental Modelling & Software, 25(12), 1592-1607. doi:10.1016/j.envsoft.2010.05.008Nathan, R., Jordan, P., Scorah, M., Lang, S., Kuczera, G., Schaefer, M., & Weinmann, E. (2016). Estimating the exceedance probability of extreme rainfalls up to the probable maximum precipitation. Journal of Hydrology, 543, 706-720. doi:10.1016/j.jhydrol.2016.10.044Nathan R. J. and S. K. Merz. 2001. “Estimation of extreme hydrologic events in Australia: Current practice and research needs.” Paper 13 in Proc. Hydrologic research needs for dam safety 69–77. Washington DC: FEMA.Nobilis, F., Haiden, T., & Kerschbaum, M. (1991). Statistical considerations concerning Probable Maximum Precipitation (PMP) in the Alpine Country of Austria. Theoretical and Applied Climatology, 44(2), 89-94. doi:10.1007/bf00867996NWS (National Weather Service). 2015. “Regions covered by different NWS PMP documents (as of 2015) (map).” Accessed May 1 2020. https://www.nws.noaa.gov/oh/hdsc/studies/pmp.html.Ohara, N., Kavvas, M. L., Anderson, M. L., Chen, Z. Q., & Ishida, K. (2017). Characterization of Extreme Storm Events Using a Numerical Model–Based Precipitation Maximization Procedure in the Feather, Yuba, and American River Watersheds in California. Journal of Hydrometeorology, 18(5), 1413-1423. doi:10.1175/jhm-d-15-0232.1Ohara, N., Kavvas, M. L., Kure, S., Chen, Z. Q., Jang, S., & Tan, E. (2011). Physically Based Estimation of Maximum Precipitation over American River Watershed, California. Journal of Hydrologic Engineering, 16(4), 351-361. doi:10.1061/(asce)he.1943-5584.0000324Papalexiou, S. M. (2018). Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal distributions, correlation structures, and intermittency. Advances in Water Resources, 115, 234-252. doi:10.1016/j.advwatres.2018.02.013Papalexiou, S. M., AghaKouchak, A., & Foufoula‐Georgiou, E. (2018). A Diagnostic Framework for Understanding Climatology of Tails of Hourly Precipitation Extremes in the United States. Water Resources Research, 54(9), 6725-6738. doi:10.1029/2018wr022732Papalexiou, S. M., & Koutsoyiannis, D. (2006). A probabilistic approach to the concept of Probable Maximum Precipitation. Advances in Geosciences, 7, 51-54. doi:10.5194/adgeo-7-51-2006Papalexiou, S. M., & Koutsoyiannis, D. (2012). Entropy based derivation of probability distributions: A case study to daily rainfall. Advances in Water Resources, 45, 51-57. doi:10.1016/j.advwatres.2011.11.007Papalexiou, S. M., & Koutsoyiannis, D. (2013). Battle of extreme value distributions: A global survey on extreme daily rainfall. Water Resources Research, 49(1), 187-201. doi:10.1029/2012wr012557Papalexiou, S. M., & Koutsoyiannis, D. (2016). A global survey on the seasonal variation of the marginal distribution of daily precipitation. Advances in Water Resources, 94, 131-145. doi:10.1016/j.advwatres.2016.05.005Papalexiou, S. M., Koutsoyiannis, D., & Makropoulos, C. (2013). How extreme is extreme? An assessment of daily rainfall distribution tails. Hydrology and Earth System Sciences, 17(2), 851-862. doi:10.5194/hess-17-851-2013Papalexiou, S. M., Markonis, Y., Lombardo, F., AghaKouchak, A., & Foufoula‐Georgiou, E. (2018). Precise Temporal Disaggregation Preserving Marginals and Correlations (DiPMaC) for Stationary and Nonstationary Processes. Water Resources Research, 54(10), 7435-7458. doi:10.1029/2018wr022726III, J. P. (1975). Statistical Inference Using Extreme Order Statistics. The Annals of Statistics, 3(1). doi:10.1214/aos/1176343003Rakhecha, P. R., Deshpande, N. R., & Soman, M. K. (1992). Probable maximum precipitation for a 2-day duration over the Indian Peninsula. Theoretical and Applied Climatology, 45(4), 277-283. doi:10.1007/bf00865518Rakhecha, P. R., & Soman, M. K. (1994). Estimation of probable maximum precipitation for a 2-day duration: Part 2 ? north Indian region. Theoretical and Applied Climatology, 49(2), 77-84. doi:10.1007/bf00868192Rastogi, D., Kao, S., Ashfaq, M., Mei, R., Kabela, E. D., Gangrade, S., … Anantharaj, V. G. (2017). Effects of climate change on probable maximum precipitation: A sensitivity study over the Alabama‐Coosa‐Tallapoosa River Basin. Journal of Geophysical Research: Atmospheres, 122(9), 4808-4828. doi:10.1002/2016jd026001Reed D. W. and E. J. Stewart. 1989. “Focus on rainfall growth estimation.” In Proc. 2nd National Hydrology Symp. Sheffield UK: British Hydrological Society.Rezacova, D., Pesice, P., & Sokol, Z. (2005). An estimation of the probable maximum precipitation for river basins in the Czech Republic. Atmospheric Research, 77(1-4), 407-421. doi:10.1016/j.atmosres.2004.10.011Rouhani, H., & Leconte, R. (2016). A novel method to estimate the maximization ratio of the Probable Maximum Precipitation (PMP) using regional climate model output. Water Resources Research, 52(9), 7347-7365. doi:10.1002/2016wr018603Rouha

    The Perils of Regridding: Examples Using a Global Precipitation Dataset

    Get PDF
    Canada First Research Excellence Fund’s Global Water Futures program, the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chairs program, and the Pacific Institute for Mathematical StudiesPeer ReviewedGridded precipitation datasets are used in many applications such as the analysis of climate variability/change and hydrological modeling. Regridding precipitation datasets is common for model coupling (e.g., coupling atmospheric and hydrological models) or comparing different models and datasets. However, regridding can considerably alter precipitation statistics. In this global analysis, the effects of regridding a precipitation dataset are emphasized using three regridding methods (first-order conservative, bilinear, and distance-weighted averaging). The differences between the original and regridded dataset are substantial and greatest at high quantiles. Differences of 46 and 0.13 mm are noted in high (0.95) and low (0.05) quantiles, respectively. The impacts of regridding vary spatially for land and oceanic regions; there are substantial differences at high quantiles in tropical land regions, and at low quantiles in polar regions. These impacts are approximately the same for different regridding methods. The differences increase with the size of the grid at higher quantiles and vice versa for low quantiles. As the grid resolution increases, the difference between original and regridded data declines, yet the shift size dominates for high quantiles for which the differences are higher. While regridding is often necessary to use gridded precipitation datasets, it should be used with great caution for fine resolutions (e.g., daily and subdaily), because it can severely alter the statistical properties of precipitation, specifically at high and low quantiles

    Final Report developed under Contract #3000704047 for Natural Resources Canada

    Get PDF
    Natural Resources CanadaNon-Peer ReviewedIn the recent decades, precipitation patterns and corresponding streamflow responses in many cold regions catchments have changed considerably due to warming. Understanding historical changes and predicting future responses are of great importance for planning and management of water resources systems. Regional climate simulations using convention- permitting models are helpful in representing the fine-scale cloud and mesoscale processes, which are critical for understanding the physical mechanisms that cause in convective precipitation. From a hydrological perspective, these fine resolution simulations are helpful in understanding the runoff generation mechanisms, particularly for mountainous watersheds, which have high spatial variation in precipitation due to large differences in elevation over small distances. The sister-study of this report, the Bow River Basin Study (BRBS), used a physically based hydrological land surface scheme along with a water management model, coupled with a high resolution convention- permitting atmospheric regional model (Weather Research and Forecasting, WRF) to understand the streamflow generating mechanisms and identify the changes in streamflow responses of the Bow and Elbow River Basins. The coupled model appears to provide a large improvement in predictability, with minimal calibration of parameters and without bias correction of forcing from the atmospheric model. The model4 was able to provide reliable estimates of streamflows, despite the complex topography in the catchment. Using the WRF Pseudo Global Warming (PGW) scenario, estimated future streamflows simulated were then used to develop projected flow exceedance curves. The uncertainty in the simulations is extremely helpful in the risk assessment for downstream flood inundations. However, the uncertainty in streamflows cannot be assessed as the WRF- PGW dataset was only available for a single realization, because of the high computational cost. The research presented in this report focusses instead on using the highly efficient hydrological model developed and verified in BRBS whilst assessing uncertainty using another regional climate model, the CanRCM4, where many realizations are available for different boundary conditions. Since the CanRCM4 simulations have a relatively low resolution, a novel methodology was developed to adjust regional climate model outputs using the WRF-PGW data. An ensemble of 15 CanRCM4 simulations was used to force the Bow River basin model to determine a measure of the uncertainty in the simulated streamflows, and the projected streamflow exceedance probability curves. These curves are extremely useful for risk assessment for downstream flood inundations. Given the importance of understanding how much extreme precipitation will change in urban areas of the basin, where short duration high intensity events cause flash flooding, frequency analysis of these events was carried out for Calgary and Intensity Duration Frequency (IDF) curves were developed. A ready-to-use empirical form of IDF curve has been proposed from this analysis for the City of Calgary. The results from the WRF-PGW modelling indicated that future high flow, low frequency (exceedances less than 10%) streamflow events will decrease compared to those under the current climate condition by 4, 9 and 1.6 m3/s for the Bow River at Banff and Calgary and Elbow River at Sarcee Bridge respectively. The average of the 15 new CanRCM4-WRF-PGW results supports the above result with some greater decreases in streamflow of 9, 16 and 4 m3/s for Bow River at Banff and Calgary and Elbow River at Sarcee Bridge respectively. However, there were some CanRCM4-WRF-PGW realisations that suggested substantial increases in future low frequency streamflow from those indicated by the average CanRCM4- WRF-PGW-drive MESH model. The below average, high frequency (exceedances greater than 30%) future streamflows will increase modestly in all gauging locations by from 1 to 12.5 m3/s. The results of the extreme precipitation analysis at Calgary indicated an increase in future extreme precipitation events of all duration and return periods. On an average an increase of 1.5 times is noted for short return periods (=2, 5), and an increase of 4 times for long return periods (=500, 1000)

    Πιθανοτικές κατανομές μέγιστης εντροπίας και στατιστική-στοχαστική μοντελοποίηση της βροχόπτωσης

    No full text
    188 σ.Εξετάζονται τρία κυρίως θέματα: (α) η δυνατότητα να χρησιμοποιηθεί μια θεωρητική αρχή, συγκεκριμένα η αρχή της μέγιστης εντροπίας, ως βάση για τη διαμόρφωση και την επιλογή πιθανοτικών κατανομών κατάλληλων για γεωφυσικές μεταβλητές και ειδικότερα για τη βροχόπτωση, (β) η πιθανοτική-στατιστική ανάλυση σε παγκόσμια κλίμακα της ημερήσιας βροχόπτωσης καθώς και της ακραίας ημερήσιας βροχόπτωσης και (γ) η στοχαστική δομή της ημερήσιας βροχόπτωσης σε πολύ μικρή χρονική κλίμακα. Βασικός στόχος της έρευνας είναι να διατυπώσει απλά αλλά θεμελιώδη και ευρέως ενδιαφέροντος ερωτήματα σχετικά με τη στατιστική-στοχαστική φύση της βροχόπτωσης και να δώσει απαντήσεις όχι μόνο θεωρητικής αλλά κυρίως πρακτικής αξίας. Σχετικά με την αρχή της μέγιστης εντροπίας, η έμφαση δίνεται στη διαμόρφωση και στη λογική και θεωρητική τεκμηρίωση απλών περιορισμών που σε συνδυασμό με τον κλασικό ορισμό της εντροπίας, δηλαδή αυτού των Boltzmann-Gibbs-Shannon, θα οδηγούν σε ευέλικτες και απλές κατανομές κατάλληλες για την πιθανοτική περιγραφή της βροχόπτωσης αλλά και άλλων γεωφυσικών μεταβλητών. Για τη στατιστική ανάλυση της ημερήσιας βροχόπτωσης, εξετάστηκαν τρεις διαφορετικές πτυχές της. Πρώτον, η εποχιακή διακύμανση της με επίκεντρο στις ιδιότητες της περιθώριας κατανομή της. Συγκεκριμένα εκπονήθηκε μια μαζική εμπειρική ανάλυση περισσότερων από 170 000 μηνιαίων δειγμάτων βροχόπτωσης σε περισσότερους από 14 000 σταθμούς σε όλο τον κόσμο με στόχο να απαντηθούν δύο βασικά ερωτήματα: (α) ποια στατιστικά χαρακτηριστικά της ημερήσιας βροχόπτωσης παρουσιάζουν τη μεγαλύτερη εποχιακή διακύμανση, και (β) κατά πόσον υπάρχει ή όχι ένα σχετικά απλό πιθανοτικό μοντέλο ικανό να περιγράψει τη θετική ημερήσια βροχόπτωση για κάθε μήνα και σε κάθε περιοχή του κόσμου. Δεύτερον, εξετάζεται η ουρά της κατανομής της ημερήσιας βροχόπτωσης, δηλαδή, το μέρος της κατανομής που περιγράφει τα ακραία γεγονότα. Αναλύθηκαν ακραίες βροχοπτώσεις σε περισσότερους από 15 000 σταθμούς και συγκρίθηκε η απόδοση τεσσάρων κοινών πιθανοτικών μοντέλων ουράς που αντιστοιχούν στις κατανομές Pareto, Weibull, Λογαριθμοκανονικής και Γάμα. Σκοπός ήταν να αποκαλυφθεί ποιος τύπος ουράς περιγράφει καλύτερα τη συμπεριφορά των ακραίων γεγονότων. Τρίτον, αναλύονται οι χρονοσειρές της ετήσιας μέγιστης ημερήσιας βροχόπτωσης σε περισσότερους από 15 000 σταθμούς με στόχο να απαντηθεί ίσως το βασικότερο ερώτημα της στατιστικής υδρολογίας, δηλαδή, ποια εκ των τριών κατανομών ακραίων τιμών περιγράφει καλύτερα τα ετήσια μέγιστα της ημερήσιας βροχόπτωσης. Τέλος, εξετάζονται οι στοχαστικές ιδιότητες της βροχόπτωσης σε λεπτή χρονική κλίμακα, μελετώντας ένα μοναδικό σύνολο δεδομένων που περιλαμβάνει μετρήσεις επτά επεισοδίων βροχόπτωσης με χρονική διακριτότητα 5-10 δευτερόλεπτων. Το ερώτημα που τίθεται και επιχειρείται να απαντηθεί είναι αν είναι δυνατόν ένα μοναδικό και απλό στοχαστικό μοντέλο να αναπαράγει τη μεγάλη στατιστική διαφοροποίηση που παρατηρήθηκε στα επεισόδια αυτά.Three main issues are examined: (a) the potential to use a theoretical principle, namely the principle of maximum entropy, as a basis for formulating and selecting probabilistic distributions suitable for geophysical variables and more specifically for rainfall, (b) the probabilistic-statistical analysis of daily rainfall and of extreme daily rainfall on a global scale, and (c) the stochastic structure of daily rainfall at fine temporal scales. The main goal of this research is to formulate simple yet fundamental and of wide interest questions, mainly regarding the statistical-stochastic nature of rainfall, and try to provide answers not only of theoretical but mostly of practical value. Regarding the principle of maximum entropy the emphasis is given on formulating and logically justifying simple constraints to be used along with the maximization of the classical definition of entropy, i.e., the Boltzmann-Gibbs-Shannon entropy, that will lead suitable probability distributions for rainfall, or more generally, for geophysical processes. Regarding the statistical analysis of daily rainfall, three different aspects are examined. First, the seasonal variation of daily rainfall is investigated focusing on the properties of its marginal distribution. A massive empirical analysis is performed of more than 170 000 monthly daily rainfall records from more than 14 000 stations from all over the globe aiming to answer two major questions: (a) which statistical characteristics of daily rainfall vary the most over the months and how much, and (b) whether or not there is a relatively simple probability model that can describe the nonzero daily rainfall at every month and every area of the world. Second, the distribution tail of daily rainfall is studied, i.e., the distribution’s part that describes the extreme events. More than 15 000 daily rainfall records are analysed in order to test the performance of four common distribution tails that correspond to the Pareto, the Weibull, the Lognormal and the Gamma distributions aiming to find out which of them better describes the behaviour of extreme events. Third, the annual maximum daily rainfall is analysed. The annual maxima time series from more than 15 000 stations from all over the world are extracted and examined in order to answer one of the most basic questions in statistical hydrology, i.e., which one of the three Extreme Value distributions better describes the annual maximum daily rainfall. Finally, regarding the stochastic properties of rainfall at fine temporal scales, a unique dataset, comprising measurements of seven storm events at a temporal resolution of 5-10 seconds, is studied. The question raised and attempted to be answered is if it is possible for a single and simple stochastic model to generate a plethora of temporal rainfall patterns, as well as to detect the major characteristics of such a model.Σίμων-Μιχαήλ Δ. Παπαλεξίο
    corecore