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ABSTRACT: Gridded precipitation datasets are used in many applications such as the analysis of climate variability/
change and hydrological modeling. Regridding precipitation datasets is common for model coupling (e.g., coupling atmo-
spheric and hydrological models) or comparing different models and datasets. However, regridding can considerably alter
precipitation statistics. In this global analysis, the effects of regridding a precipitation dataset are emphasized using three
regridding methods (first-order conservative, bilinear, and distance-weighted averaging). The differences between the orig-
inal and regridded dataset are substantial and greatest at high quantiles. Differences of 46 and 0.13 mm are noted in high
(0.95) and low (0.05) quantiles, respectively. The impacts of regridding vary spatially for land and oceanic regions; there
are substantial differences at high quantiles in tropical land regions, and at low quantiles in polar regions. These impacts
are approximately the same for different regridding methods. The differences increase with the size of the grid at higher
quantiles and vice versa for low quantiles. As the grid resolution increases, the difference between original and regridded
data declines, yet the shift size dominates for high quantiles for which the differences are higher. While regridding is often
necessary to use gridded precipitation datasets, it should be used with great caution for fine resolutions (e.g., daily and sub-
daily), because it can severely alter the statistical properties of precipitation, specifically at high and low quantiles.

SIGNIFICANCE STATEMENT: Regridding has a substantial impact on the statistical properties of precipitation.
The impacts of regridding vary spatially as well as at different quantiles. Regridding should be used with great caution.

KEYWORDS: Precipitation; Data processing; Interpolation schemes

1. Introduction

Regridding or remapping is the process of interpolating from
one grid to another. This may involve both temporal and spatial
(horizontal) interpolations, yet typically, regridding refers to
spatial interpolation. Regridding is necessary in model coupling
(e.g., coupling atmospheric and hydrological models) and com-
paring different models and datasets (Gautam et al. 2018; Sun
et al. 2018). Regridding is commonly used in climate change
impact studies (Alexander et al. 2006), hydrological modeling
(Chen and Brissette 2017; Li et al. 2019), forecast applications
(Lavers et al. 2009), moisture transport studies (Ghodichore
et al. 2019), trend analysis (Harrison et al. 2019), and wildfire
prediction (Yue et al. 2014). The effects of regridding vary with
the variable under consideration. Precipitation is a critical vari-
able for hydrology and is especially sensitive to regridding due

to its high spatial variability and intermittency. Though regional
studies have explored the effects of regridding (Accadia et al.
2003; Berndt and Haberlandt 2018; Diaconescu et al. 2015;
Ensor and Robeson 2008; Rauscher et al. 2010), a global per-
spective is still lacking as these effects vary with region. It is
important to understand changes in precipitation at different
latitudes and for different quantiles to distinguish regions and
situations with low or high changes.

Global gridded precipitation products are developed using differ-
ent data sources and assimilation techniques (Ashouri et al. 2015;
Chen et al. 2008, 2017; Fuka et al. 2014; Saha et al. 2014; Weedon
et al. 2014). Given several datasets, there is always interest to assess
differences among them in various regions (Akinsanola et al. 2017;
Dinku et al. 2008; Donat et al. 2014; Hu et al. 2018; Kidd et al. 2012;
Sun et al. 2014; Zhang et al. 2013). However, the spatial resolution of
datasets can be very different, and in some cases even if the grid reso-
lution is same, the grids are unaligned. For example, theMulti-Source
Weighted-Ensemble Precipitation (MSWEP) and the National Cen-
ters for Environmental Prediction Climate Forecast SystemReanaly-
sis (NCEP–CFSR) products have the same resolution (0.5° 3 0.5°),
yet the grids start at (89.75°, 2179.75°) and (90°, 2179.50°), respec-
tively. Therefore, comparing two products for quantitative assess-
ment, necessitates regridding them to a unified resolution and grid
placement (Henn et al. 2018; Sun et al. 2018).

Typically, to assess the frequency and severity of extreme
events, several climate indices are used in the literature and
gridded products are used to estimate such indices (e.g., the
Expert Team on Climate Change Detection and Indices
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(ETCCDI), Alexander et al. 2006). Indices such as R95
(Annual total precipitation from days greater than 95th per-
centile), R20 (the number of days with precipitation greater
than 20 mm), consecutive dry days, etc., are cross compared
among the gridded products (Contractor et al. 2015). How-
ever, most studies do not pay attention to the effects of regrid-
ding the datasets on the analysis, results, and conclusions. For
example, one regional study that highlight the effects of
regridding in the North Atlantic basin documents a 4%
increase in low precipitation values and a corresponding
decrease in zero precipitation (Booth et al. 2018). However,
the effects are not constant in space and vary with respect to
the magnitude of the precipitation. There have been no stud-
ies at the global scale highlighting the discrepancies and/or
the effects of regridding precipitation data products. Also, the
effects of grid resolution and the size of the shifted grid while
regridding have not been explored. Here, the effects of regrid-
ding precipitation using different techniques including bilinear,
conservative and distance-weighted averaging remapping, are
quantified using one global gridded product as an example.
Specifically, the aim is to understand the effects of 1) regridding
across different latitudes and quantiles, 2) the regridding
method used, 3) the size of the grid shift, and 4) the spatial reso-
lution of the gridded product.

2. Data and methods

A global precipitation gridded dataset, the MSWEP, ver-
sion 2.0 (Beck et al. 2017), was chosen to evaluate the effects
of regridding. The widely used MSWEP dataset is formed by
optimally merging data from various sources (including gauge
observations, satellite, and reanalysis). The dataset is avail-
able at two spatial resolutions, 0.5° 3 0.5° and 0.1° 3 0.1°
with daily temporal resolution from 1969 to 2016; it covers
both land and ocean. Here, four different analyses were per-
formed in line with the objectives: 1) a simple shift of 0.25° in
the 0.5° 3 0.5° grid was made so that the starting coordinates
(89.75°, 2179.75°) are shifted to (89.50°, 2179.50°). The
regridded data still have the original 0.5°3 0.5° spatial resolu-
tion (Fig. 1a), 2) different regridding methods are used to
understand the effects of the method, 3) to check the effect of

the size of the shift, multiple small shifts were made in the
0.5° 3 0.5° data and regridded back to the original 0.5° 3 0.5°
(Figs. 1b,c), and 4) a simple shift of 0.05° was made in the 0.1°
3 0.1° data (Fig. 1). In this study, the grid shift is considered
as a diagonal shift, that is, shift in both latitude and longitude.

Numerous grid interpolation methods exist; simple classical
methods such as bilinear, nearest-neighbor approaches,
weighting based on nearest neighbors, and applications of
splines (see, e.g., Accadia et al. 2003; Berndt and Haberlandt
2018; Hofstra et al. 2008), as well as more sophisticated
approaches such as conservative and patch-based methods
(see, e.g., Fischer et al. 2014; McGinnis et al. 2010). Regrid-
ding precipitation is always challenging due to the high spatial
variability and intermittency. Here three regridding techni-
ques, first-order conservative, bilinear interpolation, and
distance-weighted approach, were used. The first-order con-
servative regridding method preserves the integral of the
source field (precipitation in this case) across grids (Jones
1999). The bilinear approach uses a linear interpolation in
two directions considering the four nearest grids of original
data. The distance-weighted average or the inverse distance
weighting approach is based on the distance of the surround-
ing four points in the original grid that are closest to each
point in the target grid. The Climate Data Operator (CDO)
was used to regrid the data (Schulzweida 2019). CDO is a
commonly used platform to manipulate and analyze gridded
data (for more information, see https://code.mpimet.mpg.de/
projects/cdo/). The nearest-neighbor method, a most widely
used method for precipitation (Accadia et al. 2003; Berndt
and Haberlandt 2018; Hofstra et al. 2008; Shen et al. 2001),
typically considers the grid to the nearest target grid, that is,
the grid is just shifted with same precipitation time series; that
is, data with coordinates (89.75°, 2179.75°) are shifted to (89.
50°, 2179.50°). The nearest-neighbor method is highly sensi-
tive to the distance between the target and the source, and for
larger grid shifts this usually causes undesired results. There-
fore, this method is not considered in this study. Also, effects
due to the spatial reference systems including geographic
coordinate systems and projected coordinate systems/map
projections (e.g., Lambert equal-area azimuthal, equidistant
azimuthal, Albers equal-area conic, equidistant conic, and

FIG. 1. Grids of the original (blue) and regridded (orange) data: (a) grid shift in original grids, (b) grid shift in regridded grids, and (c)
regridded-to-original grids. In (a), the highlighted blue lines show area represented by grid (88.75, 2178.75), and the highlighted orange
points and area represent the surrounding grid points of the grid.
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Lambert conformal conic) are not considered in this work,
which have effects on the grids at high latitudes because the
grid is distorted (Battersby 2009; Li et al. 2011; Robeson 1997;
Tissot 1881; Willmott and Robeson 1995).

In the example provided in Fig. 1, the area represented by a
given original grid comprises 1=4 of the area of each of the sur-
rounding four regridded grids. Specifically, the area repre-
sented by grid point (88.75°, 2178.75°) contains parts of the
four nearest regridded points (Fig. 1a) centered at (89.00°,
2179.00°), (88.50°, 2179.00°), (89.00°, 2178.50°), and (88.50°,
2175.50°). Therefore, the precipitation of a given original
grid with each one of the four surrounding grids is compared
at different quantiles. For a given grid i and a given quantile
Q, the percentage difference PDQ,i between original and
regridded datasets is estimated as:

PDQ,i 5
OPQ,i

RPQ,i
2 1

� �
3 100%, (1)

where OPQ,i and RPQ,i is the precipitation at Q for original
and regridded grids, respectively. Note that there are four dif-
ferent regridded grids neighboring the original grid and thus
four comparisons can be made. Figure S1 in the online supple-
mental material shows the maps of PD50 in the four directions
using the conservative regridding method. No considerable
difference is noted among the four directions (four maps),
either in spatial patterns or in the percentage difference.
Therefore, results for one neighboring grid (southeast) is
shown for comparison.

The PD, however, is deceptive in some cases for understanding
the degree of variation in precipitation between gridded products.
At low values, a small variation in precipitation can lead to a large
PD. To examine this, in addition to the PD, the actual differences
d between the original and regridded precipitation (dQ,i 5 OPQ,i

2 RPQ,i) at different quantiles are calculated.

3. Results

a. Regridding 0.5° 3 0.5° data

The results show a considerable shift in the global statistics
of precipitation between the original and regridded datasets
for all regridding methods considered (see Table 1). There is a
consistent reduction in all statistics of the regridded dataset,

including the standard deviation, relative to the original data,
and this reduction is consistent among the three methods con-
sidered. Figure 2 shows the mean precipitation and standard
deviation for the original and regridded data. While visual
inspection of the spatial patterns does not discern a large
change, a decrease of 12% and 8% in the mean and standard
deviation, respectively, is observed at global scale in shifting
from original to regridded datasets using all the methods con-
sidered. Globally statistics of regridded precipitation using dif-
ferent methods are approximately the same (Table 1). The
maximum precipitation observed in the original dataset drops
by 483 mm (about 28%) in the regridded data.

Regridding smooths the precipitation, especially the extremes;
however, smoothing may not be consistent for all quantiles. A
range of quantiles were considered and precipitation at each quan-
tile Q was compared between the original and regridded data
(Fig. 3). The precipitation at high quantiles is greatly reduced rela-
tive to the low quantiles, in terms of absolute differences. At 5th
and 25th quantiles, a considerable shift is found in the histograms.
The magnitude of reduction is large at high quantiles, thus under-
estimating extreme precipitation and potentially affecting studies
related to extreme events, including flooding (Slinskey et al. 2019).
Yet the fractional reduction is higher in low quantiles than in high
quantiles. There is also a consistent increase in the number of wet
days in the regridded dataset (though a threshold is typically con-
sidered in characterizing a wet day, here precipitation greater than
zero is considered). Globally, the average probability or fraction
of zero precipitation days P0 is reduced from 0.514 to 0.446 (Fig.
S2 in the online supplemental material shows the histograms of
P0) in all the methods considered. Accordingly, the average global
days of low precipitation increased by approximately 1.5 times,
and the average days doubled in some grids. This is much higher
than found in regional studies (Booth et al. 2018), where about
4% has been reported for the Arctic region). This may have a
great impact on drought studies where the interest lies in under-
standing the changes in low quantiles (Raziei et al. 2011), leading
in miscalculating indices related to droughts such as the standard
precipitation index. The estimated annual count of days for which
precipitation is greater than 10 mm (R10) and 20 mm (R20) indi-
ces (e.g., see Alexander et al. 2006) also shows considerable differ-
ence between the datasets (Fig. S3 in the online supplemental
material).

TABLE 1. Mean value, standard deviation (std dev) and quantiles Q of original, regridded, and regridded-to-original-grids data
using first-order conservative, bilinear, and distance-weighted regridding techniques.

First-order conservative Bilinear Distance weighted

Statistic (mm) Original Regridded Regridded to original Regridded Regridded to original Regridded Regridded to original

Mean 4.860 4.273 3.893 4.273 3.893 4.273 3.893
Std dev 10.459 9.564 8.999 9.564 8.999 9.564 8.999
Q5 0.030 0.005 0.0025 0.005 0.0025 0.005 0.0025
Q25 0.180 0.097 0.058 0.098 0.058 0.097 0.058
Q50 1.190 0.872 0.671 0.873 0.671 0.872 0.671
Q75 4.900 4.170 3.673 4.170 3.673 4.170 3.672
Q95 21.710 19.634 18.300 19.633 18.290 19.632 18.300
Q99 49.600 45.347 42.667 45.345 42.665 45.344 42.661
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The absolute differences d between the original and
regridded precipitation at different quantiles are mapped; see
Fig. 4 for 5th and 95th quantiles and Fig. S4 in the online sup-
plemental material for 25th and 75th quantiles. For high

quantiles, high d (.12 mm) is observed in tropical oceans, and
low values (,1 mm) near polar regions in all regridding meth-
ods; in fact, the method of regridding does not have a major
impact on the spatial patterns except in the bilinear method at

FIG. 2. Spatial pattern of (left) mean and (right) standard deviation of (top) original and regridded using (top middle)
conservative, (bottom middle) bilinear, and (bottom) distance-weighted average techniques.
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low quantiles. Large differences were noted in high quantiles in
comparison with low quantiles. Maps of PD, comparing the
original grid and its southeast neighbor for different quantiles
demonstrate a substantial spatial variation (Figs. S5–S7 in the
online supplemental material) irrespective of the regridding
method. Especially large variations between the original and
regridded precipitation are evident near the tropics. For low
quantiles, there are high (�150%) PD over the tropical oceans,
yet PD is negative or small (�14%) over tropical land areas. In
contrast, high quantiles consistently correspond to high PD
(�30%) values over both oceans and land areas. While the spa-
tial patterns of PD and d do not match at low quantiles, they
match well at high quantiles, except in the South Pacific Ocean
near South America, South Atlantic Ocean near Africa, and
the desert interior of Africa. A few areas, the northwestern
coast of Australia, western coast of the continental United
States and Canada, and southern parts of South America, have
both high d and PD, including at the low quantiles. It should be
noted that PDs are misleading for low quantiles, that is, a high
PD refers to a small value of d.

To test if the process is reversible, the data were regridded
by shifting back the coordinates of the regridded dataset
to those of the original dataset. This regridded-to-original
dataset used the same method as the initial regridding.
Considerable differences between the original and regridded-
to-observations data are evident in Fig. 5 and Table 1 (see
also Figs. S8–S11 in the online supplemental material). Nota-
bly, the PD are higher at low quantiles than at high quantiles
and vice versa for d. P0 is further reduced to 0.393 at the
global scale (Fig. 6). Further, the cross correlations between
the original and regridded-to-observations quantile maps are
0.59, 0.85, 0.93, 0.96, 0.98, 0.99, and 0.98 at 5%, 25%, 50%,

75%, 95%, 99%, and 100% quantiles, respectively. Figure 6
shows boxplots of P0 at all grids for the original (O),
regridded (R), and regridded-to-original (RO) grids for all
the methods considered in this study. A reduction of about
76% is noted in P0 on an average between the O and RO.
This shows that the process is irreversible, with the greatest
absolute differences for high quantiles and percentage differ-
ences for low quantiles. This may be due to a systematic bias.

b. Effect of shift size

In the previous analysis, considerable changes in precipita-
tion statistics were noted with a shift of 0.25°. To understand
if the size of the shift has any effect on these changes, three
shifts were made, that is, 0.0625° (one-eighth)—shift-1
(labeled S1), 0.125° (one-fourth)—shift-2 (labeled S2) and
0.375° (three-fourths of the grid size)—shift-4 (labeled S4) in
addition to the shift of 0.25° (labeled S3). The shifts were
made and regridded back to the original grid. Given the simi-
larity of results among the three methods in section 3a, for
checking the effect of grid shift, only first-order conservative
regridding method is used. Results show that as the grid shift
decreases, the regridded data are close to the original data,
and the mean values of mean, standard deviation, and high
quantiles are close to those of the original data. However,
there is no effect of the shift size on P0. This is due to the fact
that if any grid has a nonzero precipitation and its surround-
ing grids have a zero precipitation, the regridded grid will
have a precipitation value depending on the shift size, and the
P0 is constant irrespective of the shift size. Another implica-
tion of this effect is the low quantiles were greatly reduced for
lower shifts (Fig. 7). Yet, at high quantiles, the smaller the
shift size the closer to the original data. The grid shift of

FIG. 3. Boxplots of original (O) and regridded data using conservative (C), bilinear (B), and distance-weighted (D) methods at different
quantiles at global scale. For the boxplots, whiskers denote the 95% empirical confidence interval. Plots were formed from 2162000 grids,
covering both ocean and land.
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0.125° is same as the 0.375° shift, that is, the effect of the shift
reverses after 0.25°. It is important to note that though the
regridded data are close to the original data as the shift size
reduces, there are considerable differences from the original,
unless otherwise a very minor shift, of order one-hundredth,
is made. However, such small shifts are not applied in prac-
tice. Spatially, the differences at high quantiles are higher
than at low quantiles (Fig. 8) as seen in the boxplots.

c. Effect of grid resolution

To check the effect of grid resolution on regridding, the 0.1°
data are considered and a shift size of 0.05° is made. Again,
given the similarity of the results using different regridding
methods, only the first-order conservative regridding method
is used and the regridded data are shifted back to the original
grids. Though visual inspection of the spatial patterns does not

discern a large change (see Fig. 9, top and middle rows), a
decrease of 15% and 18% in the mean and standard deviation,
respectively, is observed at global scale. These decreases are
higher than the 0.5° resolution (12% and 8%), specifically for
standard deviation. This is the due to higher mean, standard
deviation, and other quantiles in the 0.1° relative to the 0.5°
(see Fig. S12 in the online supplemental material). Typically,
at lower resolution, precipitation refers to averaged values
over a smaller area in comparison with high resolutions and
therefore, high values as well as high variations, including high
P0 at 0.1°. The spatial patterns of differences between the orig-
inal and regridded-to-original data are approximately similar
as those of 0.5°, yet the differences are higher at low quantiles
and lower at high quantiles (Figs. 9 and 10). The low differ-
ences at high quantiles in the 0.1° as compared with the 0.5° is
noted, which is due to the shift size.

FIG. 4. Spatial patterns of differences (mm) between the original and regridded data at (left) 5th and (right) 95th quan-
tiles using (top) conservative, (middle) bilinear, and (bottom) distance-weighted average techniques.
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4. Discussion
It is well known that regridding precipitation introduces a

systematic bias, yet this analysis shows that the precipitation
at high quantiles is more impacted by regridding than at low
quantiles in terms of absolute differences, and vice versa if
percentage changes are considered. Regridded points gener-
ally having a value greater than zero if the surrounding three
grids have no precipitation and the fourth one has precipita-
tion. Such a regridded point will, when converted back to the
original grid, further smooth the precipitation, that is, averag-
ing the averages for a simple averaging technique. The reason
for the increase in wet days is that the zero precipitation grids
are given a positive value in regridding due to at least one
positive value in the surrounding grids. This is also the reason
for much lower precipitation values as the shift size is reduced
(Fig. 7).

Spatially, patterns of precipitation at different quantiles
and their corresponding differences patterns are similar
except at a few grids, that is, grids with high precipitation
have high absolute differences and vice versa. However, it is
to be noted that due to regridding, precipitation do not
decrease (due to averaging), there are a few grids where pre-
cipitation increases. For example, in the Fig. 5, there are grids
with negative absolute differences where the regridded pre-
cipitation is higher than the original, specifically in the tropical
lands. This is again due to huge variation in the precipitation
among the neighboring grids. Precipitation in the ocean grids
on either side of South America is considerably lower relative
to the land, therefore, the regridded precipitation is higher
than the original in these land grids.

Spatially, the patterns of differences (both absolute and
percentage) between the original and regridded data are

FIG. 5. As in Fig. 4, but between the original data and regridded-to-original-grids data.
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approximately similar for both the resolutions, specifically at
high quantiles. Typically, precipitation refers to the average
precipitation of the grid, and as the grid resolution reduces,
precipitation statistics increase due to reduced area. In gen-
eral, fine resolution grids (of order 4 km) have best agreement
with point observations (Lee et al. 2017). As a result of
high values in the 0.1° grids, the effects of regridding are also
high at low quantiles, yet the size of the shift overcomes at
high quantiles. In fact, precipitation at low quantiles is greatly
affected at both the resolutions, yet the effect is high (approx-
imately 4 times) at 0.1°resolution relative to the 0.5°. Similar
effects are noted in the literature when station data are con-
verted to grid data (Ensor and Robeson 2008). It is also noted
in the literature that the shape of the distribution and autocor-
relations are not greatly affected by regridding (Booth et al.
2018; Rauscher et al. 2010).

Therefore, a careful assessment of the effects of regridding
should be made when comparing or coupling gridded

products. Nevertheless, it is to be expected that different
datasets will have different spatial and temporal resolutions.
Resolution depends on the computational efficiency, compu-
tational capabilities, included physical processes and physical
constraints of the underlying models used to develop the
gridded products. To overcome this, a few datasets are pro-
vided at various spatial and temporal resolutions by the devel-
opers (Haylock et al. 2008). For example, the MSWEP
dataset is also available at two temporal resolutions (3 h and
daily). However, it is impractical to provide datasets at a wide
range of spatial and temporal resolutions and so regridding to
a common resolution is needed for comparison and coupling
purposes. Unfortunately, the results of this study show that
regridding precipitation may introduce a severe bias. To avoid
this bias when comparing calculations derived from precipita-
tion data provided on differing grids, it may be better to com-
pute the climate index (to be compared) first at each grid and
then to interpolate the index to a common resolution instead

FIG. 6. Boxplots of the probability zero or the percentage of zero precipitation (P0) at global
scale for original (O), regridded (R), and regridded-to-original grid (RO) data using conservative
(C), bilinear (B), and distance-weighted average (D) techniques. Whiskers denote 95% empirical
confidence interval.

FIG. 7. Boxplots of precipitation at different quantiles for original (O) and regridded-to-original
grid for a shift size of 0.0625° (S1), 0.125° (S2), 0.25° (S3), and 0.375° (S4) using the conservative
regridding technique. Whiskers denote 95% empirical confidence interval.
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of using regridding/remapping the precipitation time series
first and then calculating the index on the regridded data.
This method of remapping (interpolating the index) has
proven successful in minimizing the errors, irrespective of
regridding methods (Diaconescu et al. 2015; Rajulapati et al.
2020; Risser et al. 2019). In the case of coupling, a careful
assessment of biases is required, and the precipitation should
be adjusted using covariates such as elevation, latitude, and
longitude (Berndt and Haberlandt 2018; Demaria et al. 2013).

5. Conclusions

Regridding or remapping smooths precipitation fields.
However, such smoothing is not consistent and varies spatially
as well as for different quantiles. The effects of remapping are
shown here using the example of the MSWEP dataset,
regridded using the first-order conservative, bilinear, and dis-
tance-weighted average methods. Specifically, effects of
regridding precipitation across different quantiles and regions,

FIG. 8. Spatial patterns of differences (mm) between the original data and regridded-to-original-grids data at (left) 5th and
(right) 95th quantiles for a shift size of (top) 0.0625°, (top middle) 0.125°, (bottommiddle) 0.25°, and (bottom) 0.375°.

R A J U LA PA T I E T A L . 1569NOVEMBER 2021

Unauthenticated | Downloaded 06/12/23 07:40 AM UTC



and the type of regridding method used are examined. The
effect of the shift size and grid resolution were also demon-
strated. Although a substantive percentage difference was
found between original and regridded precipitation in low
quantiles as compared with high quantiles, in terms of abso-
lute differences, high quantiles are greatly affected. The fre-
quency of dry days or days without precipitation was reduced
by 30% and consequently the number of wet days increased

in the regridded data. Precipitation was underestimated in the
polar regions and overestimated in the tropics at high quan-
tiles; at low quantiles, it was greatly overestimated over tropi-
cal land. The effects of regridding are irreversible, making
them persistent in subsequent spatial data analysis. At the
global scale, the choice of the regridding method has no effect
on precipitation statistics, that is, the three methods resulted
in approximately same differences. Selecting an appropriate

FIG. 9. Spatial patterns of (top) mean and (middle) standard deviation for both (left) original and (right) regridded-
to-original data at 0.1° resolution. (bottom) differences between the original data and regridded-to-original-grids data
at (left) 5th and (right) 95th quantiles for a shift size of 0.05°.
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interpolation method has been much discussed (Gervais et al.
2014; Hofstra et al. 2008); therefore, the aim of this study was
not to suggest any specific method for regridding precipitation
but to point out the spatial variability of differences between
the original and regridded precipitation and the effects of
regridding for different quantiles, specifically for the extremes
that lead to floods and droughts. The size of the shift also
effects the statistics of precipitation; as the grid shift
decreases, the mean values of mean, standard deviation, and
high quantiles are close to those of the original data. How-
ever, there is no effect of the shift size on P0. And as the grid
resolution becomes finer, average precipitation is further
reduced, with the standard deviation declining faster than for
low-resolution data. Effects of regridding are also high for
low quantiles, yet the size of the shift dominates the effects at
high quantiles.

It is challenging to regrid precipitation due to its high
spatial variation across short distances and shifting distribu-
tion with temporal and spatial scales. At short time steps
(e.g., daily and hourly) the precipitation distribution is J
shaped and at long time steps (e.g., annual), it is bell shaped
(Papalexiou et al. 2013; Papalexiou and Koutsoyiannis
2016). At fine spatial scales (e.g., 1 km), the precipitation
distribution is J shaped, and at coarse spatial scales (e.g.,
100 km), it is bell shaped because the precipitation is aver-
aged over the area of the grid. Further research is required
to select a regridding method based on grid size. For exam-
ple, when the grid size is small, the nearest-neighbor
method could be suitable for regridding to a fine resolution,
but this may not be a good choice when this is to be
regridded to a coarse resolution as the precipitation distri-
bution varies. In addition, understanding the impacts of the
shift size on precipitation scales and distribution shapes
could be studied that are important in assessing impacts
associated with changes in precipitation (Schoof 2012; Wil-
son and Toumi 2005). Also, the effects of projected coordi-
nate systems or map projections on precipitation,
specifically at high latitudes, due to different spatial inter-
polation methods could be explored. Though it was noted
that distance-weighted interpolation has no effect for

different projections (Jiang et al. 2014), this is to be exam-
ined for other techniques and grid sizes as well.

Overall, regridding should be used with caution as it can
alter the statistical properties of precipitation to a great extent
and adds uncertainty to analysis of combined precipitation
products. It is preferable to calculate indices from each pre-
cipitation product and then to interpolate the derived indices
rather than attempt to calculate an index from a regridded
precipitation product formed from coupling of original data.
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