14,485 research outputs found
Light Dark Matter: Models and Constraints
We study the direct detection prospects for a representative set of
simplified models of sub-GeV dark matter (DM), accounting for existing
terrestrial, astrophysical and cosmological constraints. We focus on dark
matter lighter than an MeV, where these constraints are most stringent, and
find three scenarios with accessible direct detection cross sections: (i) DM
interacting via an ultralight kinetically mixed dark photon, (ii) a DM
sub-component interacting with nucleons or electrons through a light scalar or
vector mediator, and (iii) DM coupled with nucleons via a mediator heavier than
~ 100 keV.Comment: 44 pages, 13 figures, reference added and minor updates to some of
the constraints, conclusions unchange
Interference of multi-mode photon echoes generated in spatially separated solid-state atomic ensembles
High-visibility interference of photon echoes generated in spatially
separated solid-state atomic ensembles is demonstrated. The solid state
ensembles were LiNbO waveguides doped with Erbium ions absorbing at 1.53
m. Bright coherent states of light in several temporal modes (up to 3) are
stored and retrieved from the optical memories using two-pulse photon echoes.
The stored and retrieved optical pulses, when combined at a beam splitter, show
almost perfect interference, which demonstrates both phase preserving storage
and indistinguishability of photon echoes from separate optical memories. By
measuring interference fringes for different storage times, we also show
explicitly that the visibility is not limited by atomic decoherence. These
results are relevant for novel quantum repeaters architectures with photon echo
based multimode quantum memories
Quantum tunneling on graphs
We explore the tunneling behavior of a quantum particle on a finite graph, in
the presence of an asymptotically large potential. Surprisingly the behavior is
governed by the local symmetry of the graph around the wells.Comment: 18 page
Salicylaldehyde hydrazones: buttressing of outer sphere hydrogen-bonding and copper-extraction properties
Salicylaldehyde hydrazones are weaker copper extractants than their oxime derivatives, which are used in hydrometallurgical processes to recover ~20 % of the world’s copper. Their strength, based on the extraction equilibrium constant Ke, can be increased by nearly three orders of magnitude by incorporating electron-withdrawing or hydrogen-bond acceptor groups (X) ortho to the phenolic OH group of the salicylaldehyde unit. Density functional theory calculations suggest that the effects of the 3-X substituents arise from a combination of their influence on the acidity of the phenol in the pH-dependent equilibrium, Cu2+ + 2Lorg ⇌ [Cu(L–H)2]org + 2H+, and on their ability to ‘buttress’ interligand hydrogen bonding by interacting with the hydrazone N–H donor group. X-ray crystal structure determination and computed structures indicate that in both the solid state and the gas phase, coordinated hydrazone groups are less planar than coordinated oximes and this has an adverse effect on intramolecular hydrogen-bond formation to the neighbouring phenolate oxygen atoms
Long-term calorie restriction in humans is not associated with indices of delayed immunologic aging: A descriptive study.
BACKGROUND: Delayed immunologic aging is purported to be a major mechanism through which calorie restriction (CR) exerts its anti-aging effects in non-human species. However, in non-obese humans, the effect of CR on the immune system has been understudied relative to its effects on the cardiometabolic system. OBJECTIVE: To examine whether CR is associated with delayed immunologic aging in non-obese humans. METHODS: We tested whether long-term CR practitioners (average 10.03 years of CR) evidenced decreased expression of T cell immunosenescence markers and longer immune cell telomeres compared to gender-, race/ethnicity-, age-, and education-matched "healthy" Body Mass Index (BMI) and "overweight"/"obese" BMI groups. RESULTS: Long-term human CR practitioners had lower BMI (p < 0.001) and fasting glucose (p < 0.001), as expected. They showed similar frequencies of pre-senescent cells (CD8+CD28- T cells and CD57 and PD-1 expressing T cells) to the comparison groups. Even after adjusting for covariates, including cytomegalovirus status, we observed shorter peripheral blood mononuclear cell telomeres in the CR group (p = 0.012) and no difference in granulocyte telomeres between groups (p = 0.42). CONCLUSIONS: We observed no clear evidence that CR as it is currently practiced in humans delays immune aging related to telomere length or T cell immunosenescent markers
Quantum simulation of frustrated magnetism in triangular optical lattices
Magnetism plays a key role in modern technology as essential building block
of many devices used in daily life. Rich future prospects connected to
spintronics, next generation storage devices or superconductivity make it a
highly dynamical field of research. Despite those ongoing efforts, the
many-body dynamics of complex magnetism is far from being well understood on a
fundamental level. Especially the study of geometrically frustrated
configurations is challenging both theoretically and experimentally. Here we
present the first realization of a large scale quantum simulator for magnetism
including frustration. We use the motional degrees of freedom of atoms to
comprehensively simulate a magnetic system in a triangular lattice. Via a
specific modulation of the optical lattice, we can tune the couplings in
different directions independently, even from ferromagnetic to
antiferromagnetic. A major advantage of our approach is that standard
Bose-Einstein-condensate temperatures are sufficient to observe magnetic
phenomena like N\'eel order and spin frustration. We are able to study a very
rich phase diagram and even to observe spontaneous symmetry breaking caused by
frustration. In addition, the quantum states realized in our spin simulator are
yet unobserved superfluid phases with non-trivial long-range order and
staggered circulating plaquette currents, which break time reversal symmetry.
These findings open the route towards highly debated phases like spin-liquids
and the study of the dynamics of quantum phase transitions.Comment: 5 pages, 4 figure
On the harmonic Boltzmannian waves in laser-plasma interaction
We study the permanent regimes of the reduced Vlasov-Maxwell system for
laser-plasma interaction. A non-relativistic and two different relativistic
models are investigated. We prove the existence of solutions where the
distribution function is Boltzmannian and the electromagnetic variables are
time-harmonic and circularly polarized
On the General Ericksen-Leslie System: Parodi's Relation, Well-posedness and Stability
In this paper we investigate the role of Parodi's relation in the
well-posedness and stability of the general Ericksen-Leslie system modeling
nematic liquid crystal flows. First, we give a formal physical derivation of
the Ericksen-Leslie system through an appropriate energy variational approach
under Parodi's relation, in which we can distinguish the
conservative/dissipative parts of the induced elastic stress. Next, we prove
global well-posedness and long-time behavior of the Ericksen-Leslie system
under the assumption that the viscosity is sufficiently large. Finally,
under Parodi's relation, we show the global well-posedness and Lyapunov
stability for the Ericksen-Leslie system near local energy minimizers. The
connection between Parodi's relation and linear stability of the
Ericksen-Leslie system is also discussed
- …
