14,485 research outputs found

    Light Dark Matter: Models and Constraints

    Get PDF
    We study the direct detection prospects for a representative set of simplified models of sub-GeV dark matter (DM), accounting for existing terrestrial, astrophysical and cosmological constraints. We focus on dark matter lighter than an MeV, where these constraints are most stringent, and find three scenarios with accessible direct detection cross sections: (i) DM interacting via an ultralight kinetically mixed dark photon, (ii) a DM sub-component interacting with nucleons or electrons through a light scalar or vector mediator, and (iii) DM coupled with nucleons via a mediator heavier than ~ 100 keV.Comment: 44 pages, 13 figures, reference added and minor updates to some of the constraints, conclusions unchange

    Interference of multi-mode photon echoes generated in spatially separated solid-state atomic ensembles

    Full text link
    High-visibility interference of photon echoes generated in spatially separated solid-state atomic ensembles is demonstrated. The solid state ensembles were LiNbO3_3 waveguides doped with Erbium ions absorbing at 1.53 μ\mum. Bright coherent states of light in several temporal modes (up to 3) are stored and retrieved from the optical memories using two-pulse photon echoes. The stored and retrieved optical pulses, when combined at a beam splitter, show almost perfect interference, which demonstrates both phase preserving storage and indistinguishability of photon echoes from separate optical memories. By measuring interference fringes for different storage times, we also show explicitly that the visibility is not limited by atomic decoherence. These results are relevant for novel quantum repeaters architectures with photon echo based multimode quantum memories

    Quantum tunneling on graphs

    Full text link
    We explore the tunneling behavior of a quantum particle on a finite graph, in the presence of an asymptotically large potential. Surprisingly the behavior is governed by the local symmetry of the graph around the wells.Comment: 18 page

    Salicylaldehyde hydrazones: buttressing of outer sphere hydrogen-bonding and copper-extraction properties

    Get PDF
    Salicylaldehyde hydrazones are weaker copper extractants than their oxime derivatives, which are used in hydrometallurgical processes to recover ~20 % of the world’s copper. Their strength, based on the extraction equilibrium constant Ke, can be increased by nearly three orders of magnitude by incorporating electron-withdrawing or hydrogen-bond acceptor groups (X) ortho to the phenolic OH group of the salicylaldehyde unit. Density functional theory calculations suggest that the effects of the 3-X substituents arise from a combination of their influence on the acidity of the phenol in the pH-dependent equilibrium, Cu2+ + 2Lorg ⇌ [Cu(L–H)2]org + 2H+, and on their ability to ‘buttress’ interligand hydrogen bonding by interacting with the hydrazone N–H donor group. X-ray crystal structure determination and computed structures indicate that in both the solid state and the gas phase, coordinated hydrazone groups are less planar than coordinated oximes and this has an adverse effect on intramolecular hydrogen-bond formation to the neighbouring phenolate oxygen atoms

    Long-term calorie restriction in humans is not associated with indices of delayed immunologic aging: A descriptive study.

    Get PDF
    BACKGROUND: Delayed immunologic aging is purported to be a major mechanism through which calorie restriction (CR) exerts its anti-aging effects in non-human species. However, in non-obese humans, the effect of CR on the immune system has been understudied relative to its effects on the cardiometabolic system. OBJECTIVE: To examine whether CR is associated with delayed immunologic aging in non-obese humans. METHODS: We tested whether long-term CR practitioners (average 10.03 years of CR) evidenced decreased expression of T cell immunosenescence markers and longer immune cell telomeres compared to gender-, race/ethnicity-, age-, and education-matched "healthy" Body Mass Index (BMI) and "overweight"/"obese" BMI groups. RESULTS: Long-term human CR practitioners had lower BMI (p <  0.001) and fasting glucose (p <  0.001), as expected. They showed similar frequencies of pre-senescent cells (CD8+CD28- T cells and CD57 and PD-1 expressing T cells) to the comparison groups. Even after adjusting for covariates, including cytomegalovirus status, we observed shorter peripheral blood mononuclear cell telomeres in the CR group (p = 0.012) and no difference in granulocyte telomeres between groups (p = 0.42). CONCLUSIONS: We observed no clear evidence that CR as it is currently practiced in humans delays immune aging related to telomere length or T cell immunosenescent markers

    Quantum simulation of frustrated magnetism in triangular optical lattices

    Full text link
    Magnetism plays a key role in modern technology as essential building block of many devices used in daily life. Rich future prospects connected to spintronics, next generation storage devices or superconductivity make it a highly dynamical field of research. Despite those ongoing efforts, the many-body dynamics of complex magnetism is far from being well understood on a fundamental level. Especially the study of geometrically frustrated configurations is challenging both theoretically and experimentally. Here we present the first realization of a large scale quantum simulator for magnetism including frustration. We use the motional degrees of freedom of atoms to comprehensively simulate a magnetic system in a triangular lattice. Via a specific modulation of the optical lattice, we can tune the couplings in different directions independently, even from ferromagnetic to antiferromagnetic. A major advantage of our approach is that standard Bose-Einstein-condensate temperatures are sufficient to observe magnetic phenomena like N\'eel order and spin frustration. We are able to study a very rich phase diagram and even to observe spontaneous symmetry breaking caused by frustration. In addition, the quantum states realized in our spin simulator are yet unobserved superfluid phases with non-trivial long-range order and staggered circulating plaquette currents, which break time reversal symmetry. These findings open the route towards highly debated phases like spin-liquids and the study of the dynamics of quantum phase transitions.Comment: 5 pages, 4 figure

    On the harmonic Boltzmannian waves in laser-plasma interaction

    Get PDF
    We study the permanent regimes of the reduced Vlasov-Maxwell system for laser-plasma interaction. A non-relativistic and two different relativistic models are investigated. We prove the existence of solutions where the distribution function is Boltzmannian and the electromagnetic variables are time-harmonic and circularly polarized

    On the General Ericksen-Leslie System: Parodi's Relation, Well-posedness and Stability

    Full text link
    In this paper we investigate the role of Parodi's relation in the well-posedness and stability of the general Ericksen-Leslie system modeling nematic liquid crystal flows. First, we give a formal physical derivation of the Ericksen-Leslie system through an appropriate energy variational approach under Parodi's relation, in which we can distinguish the conservative/dissipative parts of the induced elastic stress. Next, we prove global well-posedness and long-time behavior of the Ericksen-Leslie system under the assumption that the viscosity μ4\mu_4 is sufficiently large. Finally, under Parodi's relation, we show the global well-posedness and Lyapunov stability for the Ericksen-Leslie system near local energy minimizers. The connection between Parodi's relation and linear stability of the Ericksen-Leslie system is also discussed
    corecore