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Abstract
We study the direct detection prospects for a representative set of simplified models of sub-GeV dark matter

(DM), accounting for existing terrestrial, astrophysical and cosmological constraints. We focus on dark matter
lighter than an MeV, where these constraints are most stringent, and find three scenarios with accessible direct
detection cross sections: (i) DM interacting via an ultralight kinetically mixed dark photon, (ii) a DM sub-
component interacting with nucleons or electrons through a light scalar or vector mediator, and (iii) DM coupled
with nucleons via a mediator heavier than ∼ 100 keV.
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I. INTRODUCTION

In recent years, new ideas to search for dark matter (DM) have changed the direct detection
landscape. As highly sensitive searches for the Weakly Interacting Massive Particle (such as LUX [1],
PandaX-II [2], XENON1T [3] and SuperCDMS [4]) have not yet turned up a signal, the urgency to
develop techniques to search for DM outside of the ∼ 10 GeV − 10 TeV mass range has increased.
Outside of this window, there are theoretically well-motivated candidates that are consistent with the
observed history of our Universe. DM may reside in a hidden sector communicating via a mediator
coupled to both sectors (see for example [5–10]). The relic abundance can be fixed in a variety of ways,
including via particle-anti-particle asymmetry as in asymmetric DM [11–13], strong dynamics [14, 15],
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freeze-in [16, 17], or other thermal histories for example [18–24]. Cosmology (via structure formation
bounds on warm DM) indicates that such DM candidates, populated through thermal contact with
the standard model (SM) at some epoch, must be heavier than ∼ few keV to tens of keV [25, 26]. Thus
the keV− 10 GeV mass window is a natural place to consider searching for light DM.

Because of the existence of well-motivated candidates (such as asymmetric DM) pointing to the GeV
scale, a number of direct detection experiments targeting WIMPs through nuclear recoils have also been
actively working to increase their sensitivity to smaller energy depositions and lighter DM candidates.
Such experiments include CRESST-II [27], DAMIC [28], NEWS-G [29], PICO [30], SENSEI [31], and
SuperCDMS [32–35]. In addition, there are a number of recent proposals to detect nuclear recoils
of sub-GeV dark matter, such as liquid helium detectors [36], bond breaking in molecules [37], and
defect creation in crystal lattices [38, 39]. Furthermore, for DM masses in the MeV-GeV range, the
largest energy depositions are typically achieved not via nucleon interactions, but via scattering off
electrons. New detection methods sensitive to electron interactions have thus been proposed with
semiconductors [40, 41], atoms [42], graphene [43], and scintillators [44].

When the DM mass is below a MeV, new targets and detection techniques sensitive to meV energy
depositions must be sought. Superconductors [45–47] and Dirac materials [48] have been proposed to
detect sub-MeV DM with coupling to electrons, while superfluid helium [49, 50], though multi-phonon
and multi-roton excitation, can have sensitivity to such light DM with coupling to nucleons. The
same experiments are sensitive to small energy depositions can also detect bosonic DM (produced
nonthermally) via absorption [47, 51–54]. (See Ref. [55] for a recent summary of dark matter detection
proposals.)

Direct detection experiments do not, however, exist in isolation from other types of probes. If
the DM particle can be probed via electron or nucleon couplings in direct detection experiments, this
necessarily implies the presence of other constraints from the early Universe, structure formation in the
late Universe, as well as laboratory probes. Most of these constraints are model dependent in one way
or another, and to get a sense of their relation to the size of the couplings probed in direct detection
experiments, one must commit to a set of benchmark models. Our goal in this work is to present a
unified and complete picture of these constraints on a variety of simplified models for sub-GeV DM,
for interactions with both electrons and nucleons. For DM having mass between an MeV and a GeV,
the importance of cosmological history and terrestrial constraints was highlighted by for instance in
Refs. [56–59]. When the DM becomes lighter than an MeV, a tapestry of DM self-interaction, stellar
emission, Neff and terrestrial constraints comes to the fore. When the DM has an electron coupling,
some of these constraints were discussed in Ref. [45] and considered more extensively in Ref. [46, 60],
while scalar-mediated nucleon couplings have also been discussed in Ref. [60].

In all our benchmark models, the DM interacts with the SM via the exchange of a mediator (whether
scalar or vector) in the t-channel. The mediator will be constrained by virtue of the fact that it couples
to SM particles. The scattering cross section in direct detection experiments is typically parametrized
by

σ̄DD ∼
4παTαχ

(m2
φ + q2

0)2
µ2
Tχ, (1)

where µTχ is the reduced mass of the DM χ with the target (whether electron or nucleon), and q0 is a
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reference value for the momentum transfer. (Precise equations and conventions will be established for
each benchmark model in the corresponding section.) The scattering is defined by the light or heavy
mediator regimes, when the momentum transfer q is much smaller or much larger than the mediator
mass mφ. In these regimes, the scattering cross section is

σmassless
DD ' 1× 10−39 cm2

(αTαχ
10−30

)(µTχ
me

)2(keV
q

)4

(2)

σmassive
DD ' 2× 10−40 cm2

(αTαχ
10−16

)(µTχ
me

)2(5 MeV
mφ

)4

.

For light mediators, even with small couplings the rate is potentially observable in a direct detection
experiment sensitive to low momentum-transfer scattering. Clearly, to understand the parameter space
for direct detection, we must understand the nature of the constraints on the couplings of the mediator
to the DM, αχ, and of the mediator to the target, αT . The relevant constraints depend of course on
the mass and spin of the mediator, and whether the couplings are predominantly to nucleons, electrons
or both. The interplay between the various bounds is best understood in terms of the mediator mass
regime in which they dominate.

Massive mediator: In the massive mediator regime (mφ & 1 MeV), stellar constraints are absent
or substantially reduced such that the couplings of the mediator to the target can be as large as
αT ∼ 10−9. The remaining bounds on these couplings primarily come from rare meson processes (such
as B → Kφ) and beam dump experiments. DM self-interaction bounds place a mild limit on αχ,

αχ . 0.02

(
1 keV
mχ

)1/2 ( mφ

1 MeV

)2
. (3)

For realistic direct detection cross sections, αχ and αT are however large enough that the mediator
and the DM are generally in thermal equilibrium with the SM in the early universe. This can lead to
a contribution to the number of relativistic degrees of freedom (parameterized in terms of number of
effective neutrino species Neff), with constraints from Big Bang Nucleosynthesis (BBN) and the Cosmic
Microwave Background (CMB).

Massless mediator: When the mediator mass is below me, stellar constraints generally put a very
strong bound on αT , such that only mφ � 1 MeV gives a realistic direct detection cross section. For
example, when mφ < 100 keV, the constraints require αn . 8 × 10−26 for scalar nucleon couplings.
Stellar constraints in the massless regime are, however, strongly model dependent – a kinetically mixed
dark photon, for example, has a much smaller production in the star than a scalar. For a light mediator,
DM self-interactions also become important; for example, the constraint on the coupling αχ is:

αχ . 6× 10−10 ×
( mχ

1 MeV

)3/2
(4)

for mχvDM/mφ ≈ 10 and vDM ≈ 10−3. However, this constraint is much weaker if we consider a relic
χ which is only a sub-component of all the DM.

Here, we study three broad classes of simplified models:
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• Real scalar dark matter coupled to nucleons through a hadrophilic scalar. A scalar mediator
interacting with nucleons can be generated by the scalar coupling to top quarks or to heavy
colored vector-like fermions. We show the corresponding constraints in Fig. 1. Models of this
type also generate mediator-pion interactions, which are not relevant for direct detection but do
matter for the thermal history of the universe. We find, generally, that there are two parameter
regimes where sub-MeV DM may be detectable in a low threshold experiment (e.g. a superfluid
helium target [49, 50]) with a kg-year exposure.

In the first case, the DM scatters via a very light mediator (typically keV mass or lighter)
having small enough couplings such that it does not cool stars. For such small couplings the
mediator also decouples from the SM thermal bath before the QCD phase transition, leading to
a contribution of the mediator to ∆Neff of at most:

∆Neff ≈
4

7

(
gSM (Tνdec)

gSM (TQCD)

)4/3

≈ 0.06 (5)

with gSM (Tνdec) and gSM (TQCD) the number of degrees of freedom in the SM thermal bath at
neutrino decoupling and before the QCD phase transition, respectively. Note that this value of
∆Neff can be tested by CMB S4 experiments [61]. In order to have large enough direct detection
cross sections, we consider a sub-component of the DM so as to evade constraints from DM
self-interactions, as can be seen in Fig. 5.

The second case is where the mediator is fairly massive (typically in the 100 keV to 1 MeV mass
range). Here, for detectable cross sections, the coupling is large enough that the mediator tends
to thermalize with the pions in the early universe, giving rise to ∆Neff ≈ 4/7 for a sub-MeV
mediator. This value is in tension at the 2σ level with the Neff derived from recently improved
measurements of the deuterium abundance [62, 63]. The scenario where the mediator and the
dark matter both thermalize with the SM is moreover firmly excluded, and we must place a strong
limit on αχ to avoid thermalization of the DM with the mediator. The resulting parameter space
is shown in Fig. 6.

• Real scalar dark matter coupled to an leptophilic scalar mediator. Similar to the nucleon case,
a mediator coupling to the electrons is constrained by fifth force experiments and stellar cooling
arguments when the mediator is light, and predominantly by beam dump and other accelerator
experiments when the mediator is heavier. Bounds are shown in Fig. 7. (As such, this model
shares many qualitative features with the Higgs-portal dark matter model considered in Ref. [56]
for mDM > 1 MeV.) Similar to the nucleon case, for sub-MeV DM scattering via a light mediator
we find sizable direct detection cross sections only for a sub-component of the total DM; this
is illustrated in Fig. 9. For the massive mediator case, BBN constraints from thermalization of
the mediator via its couplings to the electron are particularly strong due to improved deuterium
measurements [63]. As shown in Fig. 10, this thermalization consideration implies that a low-
threshold experiment (such as a superconducting detector with kg-year exposure [45, 46]) will
not have sensitivity to sub-MeV DM scattering via a massive mediator.
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• Dirac fermion dark matter, coupled to a kinetically mixed dark photon or a B−L gauge boson.
Because of strong constraints from BBN, we consider only the case of a light mediator with
sufficiently small couplings that it does not thermalize with the SM. As has been noted elsewhere
[41, 48], and shown explicitly in Fig. 11, scattering via a kinetically mixed dark photon is
consistent with all current bounds in the 10 keV - 1 GeV mass range. For mχ . 1 MeV, such
DM can be probed with Dirac materials and superconductors, although in the latter case the
reach is substantially reduced due to in-medium effects. For mχ > 1 MeV various other targets
have sensitivity, in particular semiconductors. For the B−L gauge boson, there are strong fifth
force and stellar constraints, as can be seen in Fig. 13. Scattering of sub-MeV DM through such
a mediator would be detectable by either a superfluid helium or a Dirac material target, but
only for sub-component DM that evades self-interaction constraints, shown in Fig. 13.

This paper is organized to consider each of these models in turn: scalar DM coupling to a hadrophilic
scalar mediator in Section II, to a leptophilic scalar mediator in Section III, and DM scattering via
a vector mediator in Section IV. We summarize the results in Section V. We emphasize that current
prospects are often dictated by the capabilities of particular target materials for detection of sub-MeV
dark matter – in the case of nucleon couplings, superfluid helium and in the case of electron couplings,
superconductors and Dirac materials. The general considerations studied in this paper motivate the
search for materials with even stronger sensitivity to light dark matter.

II. HADROPHILIC SCALAR MEDIATOR

In our first model we assume a hadrophilic scalar mediator φ has couplings exclusively to the SM
hadrons, specifically pions and nucleons. The coupling to nucleons is the most consequential for direct
detection and the majority of the constraints, and we therefore parametrize the model in terms of the
low energy effective Lagrangian

L ⊃ −1

2
m2
χχ

2 − 1

2
m2
φφ

2 − 1

2
yχmχφχ

2 − ynφnn, (6)

where χ is a real scalar that composes all or part of the DM. On its own, this potential has runaway
directions, but these can be stabilized by adding in quartic couplings for the scalars without affecting
the dark matter phenomenology. One may further verify that with the normalization in Eq. (6), the
perturbativity condition is yχ . 4π for mφ � mχ, although we will conservatively require yχ < 1.
This will be relevant for the light mediator regime, where we will consider sub-component dark matter
such that the self-interaction constraints are relaxed. We further elaborate on unitarity and vacuum
stability in Appendix A.

In order to account for both the heavy and light mediator limits, we will parametrize the direct
detection cross section on nucleons as

σn ≡
y2
ny

2
χ

4π

µ2
χn

(m2
φ + v2

DMm
2
χ)2

, (7)

where µχn is the DM-nucleon reduced mass, and mχvDM is a reference momentum transfer with
vDM = 10−3. The dark matter scattering “form factors” (as defined, for example, in Ref. [40]) in the
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heavy and light mediator limits are F 2(q2) = 1 and F 2(q2) = (vDMmχ)4/q4, respectively. With the
normalization of the Yukawa coupling in Eq. (6), the direct detection cross section also has the same
scaling as for fermionic χ. The main difference in our results comes in when we consider the cosmology
and the contributions of the dark sector to Neff. As we will see, both the scalar and the fermionic
DM case are in tension with BBN measurements if they are in equilibrium with the SM below the
QCD phase transition. If the dark sector decouples before the QCD phase transition, the resulting Neff

depends on the number of degrees of freedom of χ and could be observable with CMB Stage IV.
Below we outline the primary constraints on yn and yχ arising from meson decays, fifth-force

experiments, stellar emission, and DM self-interactions. We then turn to constraints from cosmology,
which are sensitive to thermalization of the mediator and/or the DM. For mχ between 100 MeV and 1
GeV, this model can be probed in direct detection experiments such as CRESST [27], SuperCDMS [34]
and NEWS [29, 64]. In addition, for mχ � 1 GeV, this model could be accessible to proposed low-
threshold experiments with superfluid helium [36, 49, 50, 65], crystal defect techniques [37, 39, 66] and
magnetic bubble chambers [53].

In this work, we consider two possible origins of the nucleon interaction in Eq. (6): one with the
mediator coupling to the top, and one with the mediator coupling to a vectorlike generation of heavy,
colored particles. This distinction is only important for bounds from meson decays, which are primarily
sensitive to the coupling of φ with top quarks.

i) First consider a coupling to top quarks of the form

L ⊃ ε√
2

mt

v
φtt̄ (8)

with v = 246 GeV. This in turn induces the gluon coupling

L ⊃ αs
4Λ

φGaµνG
aµν with

1

Λ
=

ε

3πv
, (9)

which at low energies maps to a nucleon coupling

L ⊃ ynφn̄n with yn = −ε2mn

3bv
≈ −2.6× 10−4ε, (10)

where b = 29/3 is the first coefficient of the QCD β-function. Here we assumed that mφ is
below the strange quark mass, and neglected the small light quark contributions to the nucleon
mass [67]. While we do not explicitly consider couplings to the lighter quarks, they would not
substantially change the constraints, provided that φ does not mediate a large flavor-changing
interaction. For example, a model where φ couples to the SM quarks through minimal flavor
violation (MFV) would be consistent with our setup, though we here assume that the coupling
to leptons can be neglected.

ii) Alternatively, if the mediator couples to a colored vector-like generation, we also generate the
gluon interaction in Eq. (9), where Λ is now a function of the mass (mQ) and coupling of the
heavy generation. We assume for simplicity that these additional particles are outside the reach
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of the LHC, with mQ ≈ 5 TeV and Λ a free parameter. The map to the low energy theory is
given by

yn = −2π

b

mn

Λ
≈ −0.65

mn

Λ
. (11)

Although there is no direct coupling to the top quark at tree-level, Eq. (8) is still generated
radiatively and can lead to rare meson decays. The leading contribution is

ε ≈
√

2
α2
s

π
log

(
m2
Q

m2
t

)
v

Λ
. (12)

Similar couplings to the lighter quarks are generated as well, but are less relevant to the meson
constraints we consider here. This induced coupling to the top quark can also be written as
ε ≈ −17yn.

As we will see, the meson constraints depend on ε rather than yn. For a fixed value of yn, they are
therefore weaker in the model with a vector-like generation. The compiled constraints on φ for these
two scenarios are summarized in Fig. 1, and are described in detail below.

A. Terrestrial constraints

1. Meson constraints

A light scalar with a coupling to hadrons appears in exotic meson decays, like B → Kφ and
K → πφ. Generally, the dominant contribution to these decay rates comes from a top-W loop (see
Figure 2), which explains the need to specify the origin of the nucleon coupling in Eq. (6).

In both models outlined above, the (indirect) coupling to the top quark opens up the radiative
decay φ→ γγ, with width of

Γφ→γγ =
q4
tN

2
c α

2

144π3

m3
φ

v2
ε2 (13)

with qt = 2/3 and Nc = 3. In the absence of a competing decay mode, this results in a lifetime for φ
of

cτ ≈
(

MeV

mφ

)3

× 1

ε2
× 108 cm. (14)

We will therefore always treat φ as missing energy in these decays, regardless of whether it decays to
photons or to an invisible state (e.g. the DM). The relevant flavor measurements to compare with are:

Br(B → K νν̄) < 1.6× 10−5 [71]
Br(K → π νν̄) = 1.73+1.15

−1.05 × 10−10 [72].
(15)
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eV keV MeV GeV
10-15

10-12

10-9

10-6

10-3

mΦ

y n SN1987a

K ® Π Φ

B ® K Φ

HB stars

RG stars

5th force

n-Xe

Φtt

eV keV MeV GeV
10-15

10-12

10-9

10-6

10-3

mΦ

y n SN1987a

K ® Π Φ

B ® K Φ

HB stars

RG stars

5th force

n-Xe

ΦGΜΝG
ΜΝ

FIG. 1. Constraints on a sub-GeV scalar mediator, given in terms of the effective scalar-nucleon coupling yn.
In the top panel, we assume that the nucleon interaction is generated by a φ-top coupling and in the bottom
panel, we assume it is generated by a φ-gluon coupling (for instance from a heavy colored fermion). We show
limits from fifth force [68] and neutron scattering searches [69] (orange), rare meson decays (green), and stellar
cooling limits from HB stars [70] (red), RG stars [70] (purple) and SN1987A (blue).
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t s

V ⇤
tb
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s

W�

�

t d

V ⇤
ts

mt Vtd

FIG. 2. Diagrams generating B → Kφ (left) and K → πφ (right).

The partial width for B → Kφ is given by (e.g. [73]),

ΓB→Kφ =
|Csb|2f0(mφ)2

16πm3
B

(
m2
B−m

2
K

mb−ms

)2
ξ(mB,mK ,mφ)

Csb =
3mbm

2
tV
∗
tsVtb

16π2v3
ε ξ(a, b, c) =

√
(a2 − b2 − c2)2 − 4b2c2

f0(q) = 0.33(1− q2/38GeV2).

(16)

where f0(q) parametrizes the hadronic form factor [74].
The width for K → πφ follows the same expression, with the appropriate substitution of the masses

and CKM matrix elements. The form factor for this process is well approximated by f0(q) ≈ 1 in the
low q limit [75]. For each scenario, the resulting bounds on ε can then be converted to a bound on yn.
For mφ � mπ, the strongest bounds come from the K → πφ process:

yn . 4.2× 10−8 (top coupling) (17)

yn . 9.3× 10−6 (vector-like generation). (18)

The constraints are shown in green on Figure 1.

2. 5th force constraints

For mediator masses below ∼ 100 eV, various 5th force experiments become relevant (see e.g. [68, 76]
for recent reviews.). This is important in particular for the cosmological fate of φ: at least for values
of yn that can give rise to detectable values of the direct detection cross section, 5th force constraints
prevent φ from being light enough to behave as dark radiation at late times [45, 60]. We will comment
more on the cosmology in Section IIC.

At low energies, the presence of the massive, scalar mediator introduces an attractive Yukawa
potential between two macroscopic objects, of the form

V (r) = − y
2
n

4π

1

r
e−mφr (19)

per nucleon pair. 5th force constraints are conventionally parametrized in terms of a modification to
the gravitational potential

V (r) = −GN
m1m2

r

(
1 + αe−mφr

)
(20)
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with m1,2 the test masses in the potential, GN Newton’s constant and α parametrizing the strength of
the additional force. Since mn � me, and since φ couples to all nucleons, we make the identification

α =
y2
n

4π

M2
pl

m2
n

. (21)

In particular, for the mediator masses most relevant for us, the strongest constraints arise from Casimir
force experiments [68], and are shown as the orange region in Figure 1. For mφ ≈ 1 eV and yn . 10−12

the bound crosses over to the stellar constraints discussed below.
In addition, bounds on new forces with masses as heavy as an MeV can also be obtained from low-

energy neutron experiments [77–79]. We show limits from neutron-Xe scattering, derived in Ref. [79],
giving a limit yn < 10−7 for mφ � MeV. The dark matter itself can mediate a force through virtual
effects, which implies that there is still a (weaker) constraint for mχ � mφ, even if the mediator itself
is too short ranged [80].

B. Astrophysical constraints

1. Stellar emission

Light bosons with small couplings to electrons or nucleons can be emitted in stars, giving rise to
rapid cooling. New energy loss processes are constrained in a number of stellar systems, giving strong
limits on the coupling of the light boson (see [81] for a review). Here we consider limits from horizontal
branch (HB) stars, red giants (RG) and supernova 1987A (SN1987A).

Horizontal branch (HB) and red giant (RG) stars have temperatures close to T ≈ 10 keV, required
for helium burning in the core. Bosons of mass up to ∼ 10− 100 keV can thus be emitted in the core,
escaping the star and leading to a new form of energy loss. The lifetime of horizontal branch stars is
measured by the ratio of the abundance of red giant to that of horizontal branch stars, and would be
shortened depending on the energy loss rate ε. Existing constraints on bosons with small couplings to
nucleons primarily utilize a condition ε . 10 erg/g/s. This approximate condition applies both for HB
and RG stars; in the latter case, the constraint is due to the fact that additional energy loss can delay
the onset of helium ignition. For a detailed discussion, see Ref. [81].

More massive mediators can be constrained by the luminosity of SN1987A, where the core temper-
ature was around T ≈ 30 MeV. Here the requirement is that any new energy loss satisfies ε . 1019

erg/g/s [81]. In addition, due to the large core density (ρ ∼ 1015 g/cm3 rather than ρ ∼ 104 g/cm3

in HB stars), light bosons emitted in the core may be re-absorbed before escaping. This leads to a
trapping regime, where the coupling of the bosons is large enough that they do not efficiently escape
the core. In this regime, the new particles can still modify energy transport within the star and may
be constrained, but this requires detailed modeling beyond the scope of this work.

Bounds from SN1987A. For a scalar with coupling ynφn̄n, constraints from SN1987A were
derived in the weak-coupling limit in Ref. [82]. Following these results, we require that the energy loss
per unit mass be ε < 1019 erg/g/s; taking a fiducial set of parameters T = 30 MeV and ρ = 3 × 1014

g/cm3, this gives a limit of yn . 10−10. (Formφ close to T , we simply assume a Boltzmann suppression
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of e−mφ/T in the rate.) This bound does not apply to large yn due to the trapping effect discussed
above – light scalars can be re-absorbed on nuclei with a mean free path smaller than the core. If φ
decays to dark matter, then the decay length may be much shorter than the φ re-absorption mean
free path. Then the question of whether the energy is lost depends on the mean free path of the dark
matter. As we will see in the next section, for mφ > 2mχ scenario we must typically require that
χ does not thermalize with φ in the early universe to evade BBN bounds. This puts a sufficiently
stringent upper bound on yχ such that the φ→ χχ decay is not relevant for SN1987A.

Ref. [82] did not provide a calculation of trapping via scalar re-absorption. We estimate that
trapping is relevant for yn & 10−7 simply by taking the results for axions [82–84]. Our justification
is the following: despite the different parametrics of scalar and axion production, the weak-coupling
constraints on axions and on scalars are quite similar, with yn . 5 × 10−11 for axions. Since the
production rate and absorption rates are related by detailed balance, Γprod(ω) = e−ω/TΓabs(ω), we
find to leading order that the absorption mean free path is given by `−1

abs ∝ ε ρ/T 4 with ε the energy
loss rate [81]. Hence, we expect the ratio of the yn at the trapping boundary to yn at the weak-coupling
limit to be similar for both axions and scalars.

There are a number of caveats in the bounds above, aside from the estimate of the trapping regime
we have used. First, the weak-coupling result in Ref. [82] was obtained with a simplified model of the
SN core, and the result can vary by up to an order of magnitude depending on the core temperature
and radius. For instance, see Ref. [85] for a discussion of systematic uncertainties for SN1987A bounds
on dark photons. In addition, the dominant production mode in this case is nucleon-nucleon scattering
with φ emission. Existing results have been calculated with the approximation of one-pion exchange.
As discussed in subsequent work [86–88], one-pion exchange is not an accurate description of nucleon-
nucleon scattering data; instead, they used a soft theorem description along with nucleon-nucleon
scattering data to calculate production rates, leading to differences of up to an order of magnitude in
some models. Finally, the result of Ref. [82] did not account for production due to mixing with the
longitudinal component of the photon, an effect discussed in Ref. [70].

Bounds from HB and RG stars. Constraints on scalars coupling to baryons from stellar emission
were given in Refs. [89, 90], with yn . 4.3×10−11 from HB stars [81]. This result was derived assuming
the Compton process γ + He → He + φ for mφ . 10 keV. Recently, constraints on light scalars were
updated in Ref. [70], which included the effects of in-medium mixing on the production of scalars.
To summarize, the scalar can mix with longitudinal photon polarization modes in a star, leading to
an additional contribution to the rate. This production mechanism is possible as long as mφ < ωp,
where the plasma frequency ωp is also the oscillation frequency of the longitudinal mode. For horizontal
branch stars ωp ∼ 2 keV and for red giants ωp ∼ 20 keV. We use the constraints given in Ref. [70], which
come from production in HB stars via brem off ions (“continuum”) and mixing effects (“resonant”), and
from production in RG cores via mixing effects. It is also possible that for sufficiently large couplings
the scalars may be trapped in RG and HB stars as in the case of SN1987A, though this requires
detailed modeling of the energy transport in the star [91, 92]. For RG and HB stars, the couplings at
which trapping would likely be relevant are also in a regime where the terrestrial constraints become
important, so we do not consider this possibility further.
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2. Dark matter self interactions

When χ composes all of the dark matter, there are significant constraints on dark matter self-
interactions from the shapes of halos (see Ref. [93] for a review). Because of the low momentum transfer
involved in the scattering, the self-interaction constraints on the dark matter coupling, αχ = y2

χ/4π,
are particularly strong in the limit of a light mediator with mφ . mχv and v ∼ 10−3. Bullet-cluster
and halo shape observations tell us that DM self-interactions should satisfy

σ

mχ
. 1− 10 cm2/g, (22)

where σ is the self-interaction cross section.
For scattering of distinguishable particles, the relevant cross section is the transfer cross section σT ,

which is the scattering weighted by momentum transfer (see Appendix B). However, for the particular
model at hand with identical particles, we instead use the viscosity cross section, defined as

σV =

∫
dΩ

dσ

dΩ
sin2 θ, (23)

in order to regulate the forward and backward scattering divergences [94]. For our benchmark model,
the non-relativistic Born cross section is

σbornV ≈
α2
χπ

m2
χv

4

(
R4 + 2R2 + 2

R2(R2 + 2)
log
[
1 +R2

]
− 1

)
(24)

with v the relative velocity and R = mχv/mφ. In the heavy mediator limit with R � 1 and cross
section bound of 1 cm2/g, the corresponding constraint on the coupling constant is

αχ . 0.025

(
1 keV
mχ

)1/2 ( mφ

1 MeV

)2
. (25)

Meanwhile, for light mediators with R� 1,

σbornV ≈
α2
χπ

m2
χv

4

(
logR2 − 1

)
. (26)

For instance, taking v = 10−3 and R = 10, we have

αχ . 6× 10−10 ×
( mχ

1 MeV

)3/2
. (27)

Furthermore, assuming dark matter self-interactions are responsible for the deviations of observed
halo shapes from ΛCDM, it is possible to fit the interaction cross section to the shapes of dwarf
galaxies, elliptical galaxies, and clusters; this was carried out in Ref. [95]. Remarkably, they found that
a mediator mass on the 1-10 MeV scale (depending on the dark matter mass) was favored by the data.

The self-interaction constraints are substantially relaxed when χ is only a fraction of the dark
matter. In addition, the effects of a strong self-interaction may enter a new regime where the dark
matter behaves as a fluid [96–98]. This would form an additional isothermal component of the Milky
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Way’s dark matter halo. For the parameter space we consider with light (but not massless) mediators,
we expect that dissipative effects are kinematically suppressed by finite mφ. Thus, as a representative
case, we will take Ωχ/ΩDM ≈ 0.05 in relaxing the SIDM constraints [99]. Interestingly, partially
interacting dark matter may also have some connections with some discrepancies in large scale structure
measurements [100, 101].

C. Cosmology

The detailed thermal history of the universe must be addressed in scenarios where the dark matter
and/or mediator are relativistic during BBN and recombination, since the light particles may contribute
to the effective number of relativistic degrees of freedom Neff. In the standard model, Neff ≈ 3.046.
The deviation from the standard model value can be written as

∆Neff =
4

7

∑
i

gi

(
Ti
Tν

)4

(28)

with gi and Ti the effective degrees of freedom and the temperature of the various relativistic species in
the dark sector, and Tν the neutrino temperature after electron decoupling in the standard cosmology.

In general, the strongest bounds come from CMB constraints on light degrees of freedom present
at late times, but they can vary significantly depending on the assumed cosmology and data sets
included in the fit. The most stringent constraint from CMB (namely Planck) and large scale structure
gives NCMB

eff = 3.04 ± 0.18(1σ) [102]. However, this fit is for the minimal extension of the standard
cosmology, and is modified in the presence of other physics. For instance, if an additional eV-scale
sterile neutrino is included, the 95% CL constraints weaken to NCMB

eff < 3.7, meff
ν,sterile < 0.38 eV, while

if the mass of active neutrinos is included, the 95% CL constraint from CMB plus large scale structure
is NCMB

eff = 3.2 ± 0.5,
∑
mν < 0.32 eV. Another modification to the standard picture is if neutrinos

have a somewhat large self interaction – instead of free-streaming, they may behave as a fluid at late
times. For instance, Ref. [103] found that NCMB

eff = 3.0± 0.3(1σ) in this scenario which again increases
the uncertainty. Finally, as noted in Ref. [63], the bounds presented by the Planck collaboration
generally assume a particular relationship between the He fraction and the baryon asymmetry.

In this paper, we choose to be as agnostic as possible about the detailed cosmological history, such
that the most robust bounds on our model come from BBN only. In particular, a recent combined fit
of He and D abundances from Ref. [63], driven by improved errors in the measured D abundance, gives
NBBN

eff = 2.89± 0.28(1σ). Using the 2D likelihood for Neff and the baryon-to-photon ratio η shown in
Ref. [63], the 2σ bound on Neff is

∆NBBN
eff . 0.5, (29)

which implies roughly 2σ tension with a single real scalar with a temperature similar to that of the
neutrinos (∆NBBN

eff ≈ 0.57). In similar spirit, Ref. [63] finds that the CMB constraint is

∆NCMB
eff . 0.6 (30)
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at recombination, where this bound uses only CMB data and no assumptions about the He fraction
from BBN are made. The next stage of CMB experiments can significantly improve on these results,
with a projected sensitivity of σ(NCMB

eff ) ≈ 0.04 from CMB Stage IV [61].
Both low mass dark matter and mediators may contribute to ∆Neff. In this section, we are con-

sidering the most optimistic case where both the dark matter and the mediator are real scalars, such
that gφ = gχ = 1. If the dark sector was ever in thermal contact with the SM, it is also necessary
to introduce a mechanism to avoid φ and/or χ having too large an abundance: for mφ & 10 eV, the
relic abundance of φ becomes a non-negligible component of the dark matter and for much larger
masses it exceeds the observed density of DM. (For mφ ≈ 1 eV, close to the boundary of the fifth force
constraints, φ behaves as hot DM, but is less than 1% of the dark matter.)

In the case where φ becomes thermalized with the SM, the simplest solution for its relic abundance
is to introduce an additional light degree of freedom, as also considered in [60]. This additional degree
of freedom can also be instrumental in setting the relic abundance of χ.1 We therefore extend our
simplified model with a real scalar a with couplings of the form

L ⊃ −1

2
maa

2 − 1

2
yamaφa

2 − 1

4
λχ2a2. (31)

We take ma � eV such that a is a small contribution to the energy density at late times, with the
main constraints coming from CMB Neff bounds.

In order to determine Neff, we must determine the ratio of the temperature of the dark sector
relative to the neutrino temperature. This quantity depends on the cosmological history, specifically
on the temperature at which the dark sector decoupled from the standard model bath, as well as
the number of dark degrees of freedom that were in equilibrium when this decoupling occurred. In
particular, for sufficiently small ya, it is possible that a does not come into equilibrium until after the
dark sector decouples from the SM. At that point, a can then be responsible for the relic abundance
of φ and χ. For instance, as long as ya . 10−1(eV/ma), then a is not in equilibrium with φ until after
φ decouples from the SM bath (which occurs at T ≈ mπ, as we discuss below). On the other hand,
the decay φ→ aa is in equilibrium through the φ mass threshold for

ya & 10−5
( mφ

200 keV

)3/2
(
eV
ma

)
, (32)

allowing for efficient depletion of the φ abundance. Therefore, in this scenario our estimates of ∆NBBN
eff

depend only on whether φ and χ have equilibrated with the SM.
Above the QCD phase transition TQCD ≈ 300 MeV, from Eqs. (9-10) we can write the coupling of

φ with gluons in terms of yn,
αsbyn
8πmn

φGaµνG
a
µν , (33)

1 There are a number of other ways one could reduce any excess density of non-relativistic φ and/or χ. First, due to its
(indirect) coupling with the top quark, φ has a radiative decay to photons, given in Eq. (13). While this process can lead
to the decay of φ before it becomes non-relativistic, one needs yn & 10−7×

√
1MeV/mφ (yn & 4 × 10−6 ×

√
1MeV/mφ)

for the φt̄t (φGG) coupling model. This is only satisfied in a very small part of the parameter space allowed by the
meson constraints. It is also a priori possible to have φ decay to neutrinos via a φν̄ν portal. This is viable for mφ & 10

MeV, and excluded for mφ . 10 MeV if φ is in equilibrium with the neutrinos during BBN [57]. For mφ � 1MeV it
is also possible that the mediator enters equilibrium only after BBN but before φ becomes non-relativistic.
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FIG. 3. Thermalization history in relation to the mφ vs yn plane, where the gray shaded regions are the
constraints from Fig. 1. Below the dashed blue line the dark sector decouples from the SM before the QCD
phase transition. Approximate values of ∆Neff are shown for both regions (see text). A representative cross
section contour for fixed mχ, and where αχ is chosen to saturate self-interaction bounds, is indicated by the
dotted gray line.

where we assume the φ coupling to light quarks is negligible. Thermal scatterings such as gg → φg

can bring the mediator into equilibrium. Since the coupling in (33) is given by an irrelevant operator,
the mediator drops out of equilibrium with the SM as the universe cools. Estimating the cross section
as σ ∝ α3

sby
2
n

64π2m2
n
, we find this process is out of equilibrium by T = 300 MeV for yn . 10−9. (For more

detailed estimates of these rates, see Appendix C.) This qualitative boundary is shown by the dashed
blue line in Fig. 3, in relation to the terrestrial and astrophysical constraints discussed in the previous
sections. In the supernova trapping window, we see that the mediator always remains in equilibrium
(region B). This is only relevant for the φGG model, where the meson constraints are somewhat weaker.
The dashed gray line is intended to give some intuition on the possible direct detection cross sections,
which will be discussed in more detail in the next section.

Then, taking yn � 10−9 (region A in Fig. 3) such that the mediator decoupled before the QCD
phase transition, the contribution to Neff from the dark sector is at most

∆NBBN
eff ≈ 4

7

∑
i

gi

(
gSM (Tνdec)

gSM (TQCD)

)4/3

≈ 0.06
∑
i

gi (34)

where we took gSM (TQCD) ≈ 61.75 and gi the degrees of freedom of the species in the dark sector
which are in equilibrium before decoupling. This case is unconstrained with current CMB or BBN data
but may be probed by CMB Stage IV [61], depending on the value of gSM at the temperature where
the dark sector decouples. For values of yn consistent with the stellar constraints, the dark sector
decouples from the SM at T ≈ 100 TeV, such that there is plenty of room for a suitable mechanism
to set the dark sector relic density. In particular, if χ is assumed to be all of the dark matter, then
annihilation of χχ → φφ is not sufficient to obtain the correct relic abundance – this is because of
the bounds on yχ from dark matter self-interactions. However, the annihilation χχ → aa can set the
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correct abundance if

λ ≈ 3× 10−7
( mχ

MeV

)
. (35)

Self-interaction bounds can still be satisfied, since χ − χ scattering is only generated through a loop
of a particles and thus is higher order in λ, scaling as λ4 while the annihilation cross section scales as
λ2. Since this way of setting the relic density via thermal freeze-out in the dark sector is essentially
independent of the direct detection and other phenomenology, we choose to be agnostic about the
specific mechanism whenever possible.

If yn & 10−9 (region B in Fig. 3), φ remains in equilibrium throughout the QCD phase transition and
even afterwards due its coupling with pions/nucleons. While the scattering on nucleons is suppressed
by the baryon-to-photon ratio η ≈ 6× 10−10, the mediator still scatters with pions. In particular, the
gluon coupling in (33) induces a pion coupling [67],

byn
18mn

φ∂π†∂π. (36)

For yn & 10−9, this keeps φ in equilibrium until around T ≈ mπ when pions decouple. In this case,
since pion and muon decoupling occurs more or less simultaneously, it is conservative to assume that
the dark sector has the same temperature as the neutrinos. This implies

∆NBBN
eff ≈ 4

7

∑
i

gi, (37)

summing over the dark degrees of freedom gi just below pion decoupling. If χ and φ are both in
equilibrium at this time, ∆NBBN

eff ≈ 1.14, which is firmly excluded. If only φ is in thermal contact with
the SM we have ∆NBBN

eff ≈ 0.57 and ∆NCMB
eff ≈ 0.72, both of which are in roughly 2σ tension with

current data. The ∆NCMB
eff number was obtained by transferring the energy density of φ to the light

scalar a, where we assumed that a and φ were not in equilibrium with one another until after T ≈ mπ.
In what follows, we will consider the 2σ tension associated with φ-SM equilibrium as permissible, but
we will insist that the dark matter χ does not thermalize with the mediator. Its relic density must
therefore have a different origin, such as from the interaction with the scalar a (as discussed above),
or from interactions with the neutrinos [20].

Before turning to the direct detection prospects, we first discuss the implications of forbidding φ-χ
equilibrium. Possible χ thermalization mechanisms are annihilation of φφ→ χχ or φ→ χχ decay, with
the latter possible only if mφ > 2mχ. If the decay is open, it dominates the thermalization process,
since it is lower order in yχ. The thermalization conditions at a particular temperature T are

mφ
T Γφ→χχ ∼ H(T ) if mφ > 2mχ

nφ(T )〈vσφφ→χχ〉 ∼ H(T ) if mφ < 2mχ,
(38)

where the factor mφ/T in the decay rate accounts for the Lorentz boost of φ at high temperatures.
We evaluate these conditions at T ≈ Max[mφ,mχ] or T ≈ mπ, whichever is lower. As long as φ
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is relativistic, we have nφ(T ) ≈ 0.38T 3. In all expressions, we neglected thermal corrections to the
potential, which is justified as long as y2

χT � mφ. The decay rate is given by

Γφ→χχ =
y2
χ

32π

m2
χ

mφ

√
1− 4m2

χ/m
2
φ. (39)

and, in the limit where mχ,φ �
√
s, the cross section is

σφφ→χχ ≈
y4
χ

16π

m2
χ

s2
. (40)

With s ∼ T 2, it is clear that both decay and scattering become more important compared to Hubble
as the temperature drops, so that χ will enter equilibrium as the universe cools. For our numerical
results, we use the full expression for σφφ→χχ (without expanding in mχ,φ �

√
s) and numerically

evaluate the thermally averaged cross section [104]

〈σφφ→χχv〉 =
1

8m4
φT
(
K2(mφ/T )

)2 ∫ ∞
4m2

φ

ds σ (s− 4m2
φ)
√
sK1(

√
s/T ), (41)

where K1,2 are modified Bessel functions of the second kind. The resulting constraint on yχ, as derived
from Eq. (38), as well as the self-interaction constraint of Section II B 2, are shown in Fig. 4 for two
benchmark points. The feature around mφ = 2mχ clearly indicates where φ → χχ decay becomes
relevant. We do not impose a φ-χ thermalization constraint for mχ & mπ, since in this case the
energy density of χ can still be deposited into the SM sector rather than in dark radiation. As can
be seen in Fig. 4, for a massive mediator in the supernova trapping window (region B in Fig. 3), the
thermalization constraint is almost always dominant over the self-interaction constraint. Instead, for
the light mediator limit (region A in Fig. 3), self-interaction bounds are important.

Finally, we note that ∆Neff may be additionally suppressed in more elaborate models, as has been
studied in some detail for light sterile neutrinos. Possible examples are late time entropy production
[105, 106], non-conventional cosmological evolution of the mass parameters [107, 108] or a late dark sec-
tor phase transition [109]. This may remove the need for demanding that the DM does not equilibrate,
and could open more parameter space.

D. Results

As suggested by the results in Figs. 1 and 3, terrestrial and astrophysical constraints indicate two
possible regimes where direct detection of sub-MeV dark matter is conceivable in this simplified model:

• mφ � mχ and yn . 10−12 (Region A in Fig. 3): The dark sector decouples from the SM before
the QCD phase transition, which cools the dark sector relative to the SM sector enough such
that ∆Neff satisfies current bounds (Eq. (34)). SIDM constraints, shown in Fig. 4, provide the
strongest constraints on yχ assuming that χ is the dominant component of the dark matter.

• mφ & 500 keV and 10−5 & yn & 10−7 in the φGG model (Region B in Fig. 3): The mediator φ
is in equilibrium with the SM until the pion threshold, leading to ∆Neff ≈ 4

7 . This is roughly
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FIG. 4. In the yχ vs mχ plane, we compare limits from self-interactions (assuming Ωχ/ΩDM = 1) to our bound
on thermalization of χ with φ, using the conditions given in Eq. (38). In the light mediator case (mφ < 10−3mχ),
we do not place a bound on χ thermalization since the values of Neff satisfy current bounds even with 2 degrees
of freedom. For the massive mediator benchmark (mφ = 500 keV), and for couplings above yn ≈ 10−9, we
require that at most φ is in equilibrium with the SM to avoid Neff bounds; this gives the thermalization bound
shown (dashed blue line). Above mχ = Tπ, we assume that the dark matter can annihilate away efficiently and
deposit entropy back into the pions.

in 2σ tension with BBN and CMB constraints. To avoid firm exclusion from BBN/CMB, we
further require that χ cannot thermalize with φ, which restricts yχ as shown in Fig. 4.

In Fig. 5, we present direct detection prospects for mφ � mχ, fixing the mφ/mχ ratio. The existing
constraints are compared with the reach for superfluid helium [50] and color centers [39]. We saturate
self-interaction constraints and include stellar bounds and fifth force constraints. If χ composes all of
the dark matter in the light mediator regime, direct detection with near future experiments appears
to be challenging for mχ . 1 MeV. On the other hand, if χ is a subcomponent of the dark matter
with Ωχ/ΩDM . 0.05, the self-interaction constraints can be relaxed as discussed in Section II B 2.
In this case we impose the conservative perturbativity bound yχ < 1 for the right panel of Fig. 5.
There is a subtlety associated with this regime: since mφ < mχ, such a large coupling implies that χ
annihilates extremely efficiently to φ, reducing its relic density to negligible levels. A straightforward
way around this is to consider a complex scalar/Dirac fermion χ with an asymmetric relic abundance.
In the regime of interest for subcomponent dark matter, the dark sector drops out of equilibrium well
above the QCD phase transition, and the additional degrees of freedom required for asymmetric dark
matter are allowed by the BBN bounds.

Both superfluid He and color centers could probe several orders of magnitude of new parameter
space in this scenario. For the superfluid He projections shown in this paper, we have included the
finite mediator mass and integrated over energies of 3 meV up to 100 eV in the nuclear recoil mode,
leading to a slightly different reach compared to Ref. [50].
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mediator regime. We scan over yn and fix yχ by demanding that the dark matter does not thermalize with φ
for mχ < mπ. For mχ > mπ, the self-interaction constraint is used instead. We show the projected reach for
NEWS-G and SuperCDMS [55], as well as proposed experiments with superfluid helium [50] or color centers [39].
The orange shaded region is excluded by CRESST [27]. For all of the accessible direct detection for mχ < 100

MeV, we note that φ is in equilibrium with the SM until after the QCD phase transition and thus ∆Neff ≈ 4
7 ,

which is in ≈ 2σ tension with current BBN and CMB bounds.
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For mφ & 500 keV, we require that the dark matter χ does not thermalize with φ, consistent with
BBN bounds, and as explained in the previous section. We present the direct detection prospects in
Fig. 6 for two benchmarks, where we fix yχ by saturating the φ-χ thermalization and SIDM constraint,
whichever is strongest. The various contours indicate the terrestrial and astrophysical constraints on
yn discussed above. Since the self-interaction constraints are less stringent than the φ-χ thermalization
condition in this scenario, we do not find substantially different results for sub-component dark matter.
The turn-on of the φ→ χχ decay mode at mχ = mφ/2 is clearly visible, and in practice we find that
accessible cross sections are excluded whenever this decay is open. Then, if one allows for a somewhat
large ∆Neff ≈ 0.57, we find that there is available parameter space for mχ > 100 keV with yn between
the meson constraints and the supernova trapping window; these cross sections could be probed by
experiments such as the nuclear recoil mode (mχ > 1 MeV) in He, color centers, SuperCDMS and
NEWS.

III. LEPTOPHILIC SCALAR MEDIATOR

Analogous to the model in the previous section, here we take real scalar dark matter χ interacting
with leptons via a scalar mediator. As long as the couplings of φ do not induce large lepton flavor-
violation (e.g. with MFV couplings), the direct detection cross section and the bulk of the constraints
depend only on the coupling to the electron. The effective Lagrangian is written as

L ⊃ −1

2
m2
χχ

2 − 1

2
m2
φφ

2 − 1

2
yχmχφχ

2 − yeφee. (42)

The discussion relating to vacuum stability of the scalar potential and perturbativity is identical to
that in Section II and Appendix A, and we take yχ < 1 everywhere. Again, we consider real scalar
dark matter for simplicity, but our results also hold for fermion DM modulo important differences in
the effects on BBN. To account for the massive and massless mediator limits, we define a reference
direct detection cross section,

σ̄e ≡
y2
χy

2
e

4π

µ2
χe

(m2
φ + α2m2

e)
2

(43)

with µχe the DM-electron reduced mass. For electron scattering, the momentum transfer scale is set
by the typical in-medium electron momentum q ∼ αme. As a result, here we define the light mediator
limit by mφ � αme. The leptophilic scalar model can be probed by superconductors [45, 46], Dirac
materials [48], liquid xenon [42, 110], graphene [43], scintillators [44], and semiconductor detectors [40,
41, 111, 112], among others [55].

The constraints on the scalar mediator with electron coupling are shown in Fig. 7, and described
in more detail in the remainder of this section. Note that these constraints have significant overlap
with Higgs mixing models, which were considered recently in the context of thermal dark matter with
mχ > 1 MeV [56]. The similarities are mostly in the very stringent stellar constraints on electron
couplings of light scalars, which in Higgs mixing models dominate over nucleon couplings despite the
Yukawa coupling suppression. Important differences arise in the context of terrestrial constraints,
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excluded by BBN constraints, as discussed in the text.

where the absence of a coupling to hadrons lifts some of the accelerator and meson decay bounds.
Cosmologically, the most important difference compared to the hadrophilic scalar is that here φ can
enter into equilibrium as the universe cools, and furthermore can remain in equilibrium through T <

mπ. This results in more robust BBN constraints on mediators with mass below a few MeV. We
describe the cosmology further in Section III C.

A. Terrestrial constraints

With only a coupling to electrons, the dominant terrestrial constraints on the mediator are derived
from precision measurements of (g − 2)e [114, 115], and from φ direct production in high intensity
e+e− colliders or beam dump experiments. For mφ < 2me, φ must decay to dark matter or photons,
where the latter decay is suppressed by α2/16π2. If φ either decays invisibly or outside the detector,
we can apply the BaBar mono-photon limits from Ref. [59]. While this constraint is one of the more
robust limits in Fig. 7, it is not competitive with the BBN and stellar constraints, which we discuss
below. When mφ & 20 MeV the BaBar dark photon search for e+e− → γ(φ→ `−`+) [113] can be used
to set a constraint, provided that φ couples to muons and electrons with mass-hierarchical couplings.
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In particular, while the dark photon model considered in Ref. [113] has democratic branching ratios
between muons and electrons, most of its sensitivity comes from the muon channel. For Br[φ→ µµ]�
Br[φ→ ee], a limit on φ can be approximated using the limit on the dark photon model considered by
BaBar. We rescale the limit to account for the hadronic branching fraction in the dark photon model
[116], which is absent in the model we consider here. If φ has a small or zero branching ratio to muons,
the limit is weaker by an order one factor. A recasting of Ref. [113] is needed in this case, which we
do not attempt here.

In the mass range mφ & 100 keV, electron beam dump experiments provide stringent constraints
[117–119], as derived for the φēe coupling in Ref. [114]. The beam dump constraints may be relaxed
if the visible decays of φ are suppressed by a competing decay mode to invisible states. This is
especially likely to occur for mφ < 2me, where the dominant visible mode is the radiative decay to
photons. Finally, fifth force constraints become important for mediator masses below an eV; they are,
however, weaker by a factor me/mn compared to the hadrophilic scalar, and so are not competitive
with stellar and BBN bounds in the mass range we consider. There are also bounds on light scalars
from measurements of splittings in positronium [120], although these are currently weaker than the
bound from (g − 2)e.

B. Astrophysical constraints

The self-interaction constraints on this model are identical to those for the hadrophilic scalar, and we
refer the reader to Section II B 2. The stellar constraints on the other hand differ quantitatively, as the
rate for producing a light mediator off an electron is enhanced compared to the rate off a comparatively
heavier nucleon. The strongest bounds are however still obtained from horizontal branch (HB) and
red giant (RG) stars for mφ . 100 keV and from SN1987A for heavier mediators. We take the HB and
RG limits from Ref. [70], which account for plasma mixing effects, and correspond to ge . 7 × 10−16

in the massless limit. Ref. [70] also included the effects of trapping for couplings as large ge ≈ 10−6,
which weakens the bounds somewhat in these stars. We show the HB and RG bounds in Fig. 7, where
we have extrapolated their results to even larger couplings (as this region is separately excluded by
BBN bounds).

Complete constraints from SN1987A have not yet been derived for this model. We estimate these
bounds in the limit that only production via mixing with the longitudinal component of the photon
is included, and neglecting direct production via Compton scattering or electrion-ion interactions. As
shown in Ref. [70], this is a “resonant” production because the energy of the emitted scalars is ω = ωL,
with ωL the frequency where the scalar and longitudinal photon dispersions cross. From Ref. [70] (see
Appendix A.4), the energy loss rate from resonant production is given by

Qres '
ωL
4π

(
ωL
mφ

ΠφL

)2 1

eωL/T − 1
, (44)

where we have used the fully relativistic result. ΠφL is the mixing of the scalar with the longitudinal
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component of the photon in the medium, which can be written as

ΠφL '
yeem

eff
e mφ

π2k

∫ ∞
0

dp v2 (fe(Ep) + fē(Ep))

(
ωL
vk

log

(
ωL + vk

ωL − vk

)
−

2m2
φ

ω2
L − k2v2

)
, (45)

where fe and fē are the phase space distributions for the electrons, v = p/Ep is the electron momentum,
and k =

√
ω2
L −m2

φ is the 3-momentum of the mediator φ. Note that the result is proportional to

the in-medium mass of the electron, meff
e ≈ 12 MeV in the core of the supernova. Using the Raffelt

condition on the energy loss per unit mass ε = Q/ρ . 1019 erg/g/s with T ≈ 30 MeV, ωL ≈ 82 MeV,
and ρ ≈ 3 × 1014 g/cm3, we obtain a limit for the weak coupling regime of ye . 10−9 for massless
scalars. Given that we have only included resonant production, we expect that the true bounds due
to thermal production may be even stronger.

To derive the trapping regime for SN1987a, we again use detailed balance to relate the production
rate to the absorption rate. For resonant production, λ−1

mfp = Γabs(ω) ∼ Qres/ω
4
L. Requiring that the

scalar is re-absorbed within R ≈ 10 km leads to a trapping limit of ye > 3× 10−7. We also account for
trapping due to the decay of φ→ e+e−, where we require that the decay length of φ→ e+e− is within
R ≈ 10 km. The decay of φ determines the bound in the trapping regime for masses MeV ≤ mφ ≤
30 MeV. (Note that in computing kinematically allowed decays to e+e−, we use the vacuum mass me

as opposed to the effective mass meff
e . This is because the thermal corrections to the electron mass

drop rapidly and become smaller than the bare me for R beyond a few km, depending on the model
assumed. Hence, while we use the in-medium meff

e for production in the core, we simply use me = 511

keV to calculate decay.)

C. Cosmology

For large enough couplings, the mediator φ will be in thermal contact with the standard model
through annihilation (e+e− → γφ) and Compton scattering (e−γ → e−φ). The decays φ → e+e− (if
mφ > 2me) and φ → γγ (if mφ < 2me) also contribute to equilibrating φ with the standard model.
Both the scattering and decay processes are IR dominated, as compared to the Hubble expansion, such
that the mediator enters thermal equilibrium as the universe cools. This is qualitatively different from
the nucleon coupling model, where the coupling with the standard model was provided by the UV
dominant, dimension-five φGG operator. In practice we find that decays are always subdominant to
the Compton and annihilation processes, regardless of mφ. In the limit s� m2

φ,m
2
e, the cross sections

are

σeγ→eφ ≈
αy2

e

s

[
log

(
s

m2
e +m2

φ

)
+

5

2

]
(46)

σee→γφ ≈
2αy2

e

s
log

(
s

4m2
e

)
. (47)
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The thermally averaged cross section for annihilation is obtained by replacing mφ → me in Eq. (41),
while the corresponding formula for Compton scattering is

〈σeγ→eφv〉 =
1

16m2
eT

3K2(me/T )

∫ ∞
m2
e

ds σ (s−m2
e)
√
sK1(

√
s/T ). (48)

Analogous to the discussion in Section IIC, we say the mediator thermalizes if the thermally averaged
rate is greater than the Hubble expansion H(T ) at T ≈ max[1MeV,mφ]. This yields the dashed yellow
line in Fig. 7; below this line, the mediator does not come in thermal contact with the standard model
while electrons and the mediator are both still relativistic. Formφ � 1MeV, this value is ye . 5×10−10

and independent of mφ. Above the electron threshold, the mediator decouples at T ∼ mφ and the
bound on ye therefore scales as ∼

√
mφ/Mpl.

For ye & 5×10−10, φ can enter equilibrium with electrons before T ∼MeV, potentially running afoul
of BBN. In particular, any light degrees of freedom in thermal equilibrium with γ/e will decrease the
deuterium abundance [57]. Here, the presence of φ dilutes the entropy release from e+e− annihilation
at the electron mass threshold, which has a bigger effect than increasing Neff alone. This is because
the photon temperature Tγ/Tν is reduced during BBN, leading to a increased baryon-to-photon ratio
η and thus a more efficient conversion of deuterium into He. We compare the results of Ref. [57] with
new measurements of the helium fraction Yp and of D/H [62, 63] in Fig. 8. It follows that mφ below
me is in tension with current measurements, regardless of whether φ is in equilibrium with other dark
degrees of freedom. This is the meaning of the yellow shaded region in Fig. 7.

The bounds further strengthen if φ and χ are both in equilibrium with the SM. Similar to the
discussion above, Fig. 8 indicates that two real scalars with mass below ≈ 5 MeV are in tension with
the new deuterium measurements. For this statement, we used the complex scalar benchmark from
[57], implicitly assuming mχ ≈ mφ, as well as the absence of other dark degrees of freedom in the
thermal bath. (The case for a non-degenerate φ and χ would require a dedicated study, which we do
not attempt here.) We note that for mφ & 10 MeV, φ could in principle transfer its entropy back to
the SM thermal bath before neutrino decoupling, for instance by freezing out against the electrons. In
this case the mχ & me bound should be sufficient, even if χ remains in equilibrium with the electrons
through off-shell φ exchange. This is an important difference with the hadrophilic scalar in Section II:
once the temperature drops below mπ in the nucleon coupling model, φ and/or χ have no more means
to effectively communicate with the SM, and all their entropy must be dumped into other dark sector
degrees of freedom. This increases ∆Neff, even if mχ,φ � 1 MeV.

For mχ . 1 MeV, other dark sector states must be present in order to set the χ relic abundance,
similar to the interactions in Eq. (31). Clearly, the precise constraints from BBN depend on the details
of how the relic abundance of χ is set and a dedicated study is necessary to map out the full allowed
parameter space. In what follows, we will restrict ourselves instead to two conservative benchmark
points as far as the heavy mediator regime is concerned:

• Fix mφ = 10 MeV, and allow χ to thermalize with φ as long as mχ > me.

• Fix mφ = mχ > 5 MeV, and allow χ to thermalize with φ, such that the bound for a complex
scalar in Fig. 8 is satisfied.
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FIG. 8. For a real (complex) scalar degree of freedom in equilibrium with electrons/photons, we compare
the results of Ref. [57] with the updated measurements of the BBN abundances of helium (Yp) and deuterium
(D/H) from Ref. [62, 63]. We show the central values of the measurements (solid blue lines) along with 1σ and
2σ bands.

D. Results

Motivated by the combination of cosmological, astrophysical, and terrestrial constraints discussed
above, we consider two regimes (similar to the hadrophilic scalar) which are demarcated according to
whether the mediator is very light or massive:

• mφ � mχ and ye . 10−15, where the bound on ye arises from stellar constraints. The dark sector
is never in equilibrium with the standard model and SIDM constraints provide the strongest
bounds on yχ (see Fig. 4), if χ is the dominant component of the dark matter. The available
parameter space in this scenario is shown in the left hand panel of Fig. 9, where we included
the expected DAMIC and SuperCDMS G2+ reach as representative examples for semiconductor
targets, as well as the reach for Dirac materials and superconductors. We find that this scenario
is not accessible with existing proposals, in agreement with earlier findings [46].

We also show the case where χ is 5% of the total dark matter density, in the right hand panel of
Fig. 9, assuming that SIDM constraints are lifted and setting yχ = 1. Similar to the hadrophilic
model, here we take χ to be a complex scalar with an asymmetric relic abundance. The symmet-
ric component of the χ abundance is then rapidly depleted through χχ̄→ φφ annihilation. The
φēe coupling remains challenging even in this case, and only superconductors are expected to
have sensitivity. It is however conceivable that the stellar constraints could be lifted or weakened
in a more sophisticated model, and that reach for Dirac materials or semiconductor targets could
be recovered.

• mφ & 10MeV and mχ & me, and mφ = mχ > 5, both with ye & 5× 10−10: For these couplings,
the mediator and the dark matter are in equilibrium with the SM in the early universe, but
disappear from the thermal bath sufficiently early to satisfy BBN constraints (in particular from
the deuterium abundance). Fig. 10 shows the resulting parameter space in this massive mediator
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scenario. In the left panel, we take mφ = 10 MeV, motivated by the window between the beam
dump and (g − 2)e constraints in Fig. 7. There is detectable and potentially unconstrained
parameter space when the DM is heavier than the electron mass, although further studies of the
BBN predictions in this case are required. In this part of parameter space one finds ye � yχ,
such that the beam dump constraints do not apply if the φ → χχ decay mode is kinematically
accessible (mχ < 5 MeV in the left hand panel of Fig. 10).

In the right panel of Fig. 10, we instead fix mφ = mχ and exclude the mφ = mχ < 5 MeV from
BBN considerations (yellow region), as discussed in the previous section. The terrestrial bounds
allow fairly large σ̄e for mχ > 10MeV. Note also that we have conservatively applied the beam
dump constraints, which excludes a range of cross sections in the mass range from 1 MeV to
100 MeV – however, these could be lifted if φ can decay to invisible states (either by taking
mφ > 2mχ or by introducing other dark sector states).
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FIG. 9. Direct detection cross section as function of the dark matter mass for the case that χ is all the dark
matter (left) and when χ composes 5% of the dark matter (right). In the former case yχ is fixed by saturating
the self-interaction constraint, while in the latter case we take yχ = 1 and assume χ is a complex scalar with
an asymmetric abundance. We take mφ = 10−3µχe, such that we are in the light mediator limit. The various
lines indicate the reach for SuperCDMS-G2+, SENSEI-100g, DAMIC-1K [55], an aluminum superconducting
(Al SC) target [46], or a Dirac material [48], assuming kg-year exposure in all cases. See Ref. [55] for other
proposals that could probe this parameter space. Current bounds from Xenon10 and Xenon100 are present only
for cross sections above the range shown.
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φ decays to invisible states.
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IV. VECTOR MEDIATORS

We now discuss vector mediators, concentrating on the simplest two anomaly-free extensions to the
SM: a kinetically mixed dark photon and a U(1)B−L gauge boson. For these benchmark models we
assume Dirac dark matter, and as such the self-interaction constraints are slightly different from the
real scalar dark matter in the previous sections. We review this in Appendix B. In the scalar mediator
scenarios discussed in Section II and III, constraints were broadly characterized by a “light mediator”
regime and a “massive mediator” regime, withmφ ∼ a few hundred keV as the rough boundary between
the two. In the light mediator regime, the constraints are driven by stellar cooling and fifth force
bounds. In the massive mediator regime, cross sections were instead limited due to terrestrial bounds,
and Neff bounds on thermalization of the dark sector (with Neff primarily important for sub-MeV dark
matter).

The vector mediator cases differ notably from the scalar mediated models in that (i) stellar con-
straints on the mediator decouple in the massless limit and (ii) the BBN bounds on the massive
mediator scenario are even more stringent than those of Section III C, given the larger number of
degrees of freedom. Due to the BBN bounds, realistic cross sections for mχ . MeV are difficult to
obtain with a massive mediator. Moreover, for mχ & MeV massive vector mediator models have been
discussed extensively in the literature already [121–126], especially for the case of a kinetically mixed
dark photon. For these reasons, we will focus exclusively on the available parameter space in the light
mediator regime.

A. Kinetically mixed dark photon

The interactions for this model are given by

L ⊃= −1

2
m2
A′A

′
µA
′µ − 1

4
F ′µνF ′µν −

ε

2
FµνF ′µν − yχA′µχ̄γµχ , (49)

where now we consider Dirac fermion dark matter. For simplicity, we assume that the mass of the dark
vector was generated by the Stueckelberg mechanism. The kinetic mixing, parameterized by ε, gives
rise to a coupling of the dark photon with electrons and protons. From this, we define the reference
electron-scattering cross section as

σ̄e ≡
4y2
χαε

2µ2
χe

(m2
A′ + α2m2

e)
2
. (50)

The scattering form factor for a light A′ is given by F 2(q2) = α4m4
e/q

4.
Unlike constraints on scalar mediators, when a vector mediator couples to SM particles proportional

to electric charge, the stellar constraints decouple due to in-medium effects as mA′ → 0. We review the
derivation of this effect in Appendix D. For dark photons, these in-medium effects have been accounted
for in the Sun, red giants, and horizontal branch stars in Refs. [129–131], while the SN1987A limits
have recently been updated in Refs. [70, 85]. In all cases, the limits on the kinetic mixing parameter ε
scale as 1/mA′ . The in-medium suppression of the A′ coupling with the electromagnetic current also
implies thermalization of A′ is a negligible effect, thus avoiding cosmological bounds on A′.
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FIG. 11. Dark matter scattering via a kinetically mixed dark photon, in the limit wheremA′ � keV. The shaded
regions show millicharged DM limits (from BBN, SN1987A, and WD/RG) [127] as well as Xenon10 bounds [42].
The dashed lines are upper bounds on the cross section, for several benchmarks where we have considered roughly
the largest allowable ε: (a) mA′ = 10−15 eV, ε = 10−3, where stellar and fifth force constraints have decoupled
(b) mA′ = 10−12 eV, ε = 10−6, consistent with the CMB bounds shown in [128], and (c) mA′ = 10−4 eV,
ε = 10−8, consistent with the stellar bounds in [129]. Here the DM-mediator coupling yχ is fixed by saturating
SIDM constraints. For larger mA′ (up to 100 keV), the bounds on ε are much stronger. Similar to Fig. 10, we
also show the reach for various direct detection proposals.

These bounds are however for direct emission of the A′, but light dark matter can also be emitted
via an off-shell photon in the medium. As reviewed in Appendix D, this process does not decouple in
the massless limit. One way to see this is that for mA′ → 0, χ is effectively millicharged with respect
to the SM photon in the stellar medium. Hence the stellar and BBN constraints on millicharged
particles can be applied to the DM [127] and are directly sensitive to the combination εyχ/e, which
is the effective millicharge of the DM in the mA′ → 0 limit. In other words, in the massless A′ limit,
both the direct detection cross section as well as the stellar and BBN constraints become independent
of mA′ . We can therefore map the millicharge constraints directly in the mχ vs σ̄e plane, indicated
by the shaded regions in Fig. 11. Furthermore, χ gains its relic abundance through production via an
off-shell photon, as in the stellar medium. The solid blue line in Fig. 11 labels couplings where the
correct abundance can be achieved through freeze-in [40, 41, 122].

Even though the stellar constraints decouple for mA′ � eV, astrophysical constraints and tests
of deviations from Coulomb’s law still constrain the mixing parameter ε as a function of mA′ . For
a summary, see for example Refs. [129, 132, 133]. (The fifth force constraints we have considered
previously are for macroscopic neutral systems, and are generally not relevant for the kinetically mixed
dark photon.) For reference, we have included a number of benchmark lines in Fig. 11: for each mA′

we have selected the largest allowed ε and we have fixed yχ by saturating SIDM constraints, such
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that direct detection cross sections above the dashed line are excluded for the corresponding value of
mA′ . We see that for sub-MeV dark matter, ultralight mediators are required to satisfy both SIDM
constraints and for χ to live on the freeze-in line.

B. B − L gauge boson

Next we consider gauging the U(1)B−L symmetry of the standard model, with gauge coupling gB−L.
To ensure the model is anomaly free, it suffices to consider Dirac neutrinos, or to add a set of 3 (heavy)
sterile neutrinos. In order to avoid complicating the cosmology, here we follow the latter avenue,
which implies that U(1)B−L is broken softly by the Majorana neutrino masses at a scale ∼ mA′/gB−L.
For most of the parameter space of interest, the sterile neutrinos can be as heavy as a few GeV.
The relevant constraints for U(1)B−L are summarized in Fig. 12, while the alternative case with an
unbroken U(1)B−L is discussed in Ref. [134]. For the sake of generality, we allow for different values for
the coupling of A′ to the SM U(1)B−L current (gB−L) and to the dark matter (yχ, as in Eq. (49)). We
note that in parts of the parameter space we consider, the hierarchy between these couplings may be
rather large and, in the absence of further model building, requires a perhaps unnaturally large B−L
charge for χ.

1. Terrestrial and astrophysical constraints

For a U(1)B−L gauge boson, the coupling to electrons and protons behaves in much the same way
as the dark photon. However, the situation is somewhat different due to the additional coupling of
the vector with neutrons, which does not decouple in the mA′ → 0 limit (see Appendix D). For the
sun, HB, and RG stars, emission from electrons dominates and the effect of the nucleon coupling is
mild, becoming important only for mA′ . 10−2 eV [70]. For SN1987A, the dominant production is
nucleon-nucleon scattering. While SN1987A constraints have not been derived for the U(1)B−L case,
we can obtain approximate constraints by combining previous results in the literature. In the weak
coupling regime, we use limits on U(1)B gauge bosons derived in Ref. [88] and the limits on dark
photons from Ref. [85], whichever is stronger; this approximates the bounds due to the coupling of the
U(1)B−L gauge boson with both electrons and nucleons. We derive the result for the trapping limit
in a similar way, by combining the trapping due to absorption from Ref. [88] and the trapping due to
decay of A′ → e+e− from Ref. [85].

For Majorana neutrinos and A′ below the muon threshold, the branching ratio A′ → e+e− is
2/5. We recast the dark photon beam dump [135, 136] and BaBar [113] constraints to account for
the invisible A′ → νν decay. As compared to the leptophilic scalar, the beam dump constraints are
truncated below 2me due to the absence of the A′ → γγ mode. The constraint on (g − 2)e is adapted
from Ref. [137]. Similar to the hadrophilic scalar in Section IIA, there are fifth force constraints. The
summary of stellar, fifth force, and terrestrial constraints is shown in Fig. 12. Note that there are
additional laboratory constraints due to neutron scattering, ν− e scattering, and other atomic physics
probes. Since these do not change the conclusions, for clarity we have not shown all of the bounds;
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for a summary of these limits as well as new bounds derived from isotope shift measurements, see
Refs. [120, 138].

2. Cosmology and results

For Majorana neutrinos, the A′ couples to the active neutrinos through the axial current. This
implies that the A′ → νν decay can keep the A′ in equilibrium with the neutrinos after the neutrinos
decouple from the electron-photon plasma. For mA′ . 10 MeV, this is excluded when comparing the
deuterium abundance [62, 63] with the predictions in [57], similar to what was done in Fig. 8 for the
leptophilic scalar. For mA′ & 10 MeV, the neutrinos can remain in equilibrium with the electron
through off-shell A′ exchange which would also increase Neff. The dominant process in this case is
e−ν → e−ν scattering with a cross section of

σe−ν→e−ν ≈
g4
B−L
6π

s

m4
A′
, (51)

for which we require that the thermal averaged rate at T ≈ 1 MeV is smaller than the Hubble expansion.
The constraints from the decay and scattering processes are indicated by the yellow line in Fig. 12. We
note that our estimates do not include plasma corrections, and refer to [134] for a treatment of these
corrections in the context of a B − L boson with Dirac neutrinos.

In the heavy mediator regime, where both the dark matter and the mediator thermalize with the
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FIG. 13. Direct detection cross section vs mχ for the case that χ composes all the dark matter (left), or that
χ is a 5% sub-component of the dark matter (right). We show the projected reach with a kg-year exposure
for SuperCDMS G2+, SENSEI-100g, DAMIC-1K [55], superfluid helium [50], an aluminum superconductor (Al
SC) target [46], and Dirac materials [48]. Constraints labeled with “WD” and “RG” refer to stellar constraints
on χ production itself, as in Fig. 11, while those from the sun, HB stars and SN1987a are bounds on emission
of A′, as in Fig. 12.

SM, mχ,A′ & 10 MeV is allowed by BBN for reasonably large coupling. Since our focus is primarily
on sub-MeV DM, we do not further elaborate here, other than noting that the beam dump constraints
Fig. 12 do not apply if yχ � gB−L and 2mχ < mA′ . We instead focus on the light mediator regime, for
which the allowed parameter space in themχ vs σ̄e plane is shown in Fig. 13, compared to the projected
reach for various proposed detectors. Note that the reach for superconductors is significantly weaker
than other meV-threshold targets such as superfluid helium and Dirac materials due to in-medium
screening effects. If χ composes all of the dark matter, none of the proposed targets have sensitivity
once the SIDM constraints are accounted for. If χ is a subcomponent of the dark matter, such that
the SIDM constraints can be relaxed, then there is some accessible parameter space with superfluid
helium or Dirac materials.

3. Comments on U(1)B

As an alternative to gauging B −L, one may consider gauging baryon number only. In contrast to
U(1)B−L, the anomalons needed to render this gauge symmetry anomaly free are not all singlets under
the SU(2)L×U(1)Y , though it is possible to construct a fully color-neutral set of states (see e.g. [139]).
Constraints from LEP demand that they are generally heavier than & 100 GeV. The self-consistency
of the low energy effective theory therefore requires mA′

gB
& 100 GeV, giving a strong bound on gB for

light mediators [140]. A further consequence of the anomalous nature of the symmetry is that certain
exotic meson decays involving the longitudinal component of the A′ are enhanced [141].

A priori one may expect that the constraints on a U(1)B gauge boson would be greatly relaxed,
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in particular on the cosmology front since the baryon density drops sharply during the QCD phase
transition. However, this is generically not the case, since the U(1)B always develops a radiative kinetic
mixing term with the standard model photon from quark loops, which reintroduces couplings to elec-
trons. Given the rather large number of flavors in the SM, this term is not particularly small, although
a mild cancellation exists between the up and down sectors. In particular, the mixing parameter is

ε ≈ −gBe
π2

Nc

3

∑
f

Qf

∫ 1

0
dx x(1− x) log

[
x(1− x)Λ2

QCD +m2
f

x(1− x)Λ2 +m2
f

]
(52)

with f running over all 6 quarks and Qf and mf the quark electric charges and masses, respectively.
We cut the running off at ΛQCD ≈ 1 GeV, since there are no additional states carrying baryon number
below this scale. The parameter Λ is the high energy threshold at which ε ≈ 0. A natural choice for Λ

is the GUT scale, which yields ε ≈ −0.33 gB, but in principle a scale as low as a few TeV is possible.
If we follow the latter (more conservative) avenue and fix Λ ≈ 5 TeV, we find ε ≈ −0.05 gB. It is
important to keep in mind that these values are estimates at best, since one expects sizable higher
order QCD corrections to this operator. The generic point, however, is that the coupling of a U(1)B
mediator to leptons is not parametrically suppressed to the extent that stellar and BBN constraints
from electrons can be neglected, and as such we do not expect a U(1)B mediator to be a significant
exception to arguments presented in this section.

V. CONCLUSIONS

We have considered simplified models for light DM, scattering off nucleons or electrons via scalar
or vector mediators in direct detection experiments. These models are tightly constrained by stellar
cooling arguments and fifth force experiments (in the light mediator limit, for mediator masses below
an MeV), or by BBN and CMB constraints on thermalization of the dark sector (in the case of more
massive mediators). The bounds restrict much of the parameter space that can be probed by current
proposals for light DM direct detection, especially for dark matter with mass below an MeV. We
highlight the simplified models of sub-MeV DM that satisfy all constraints:

• DM interacting with nucleons via a mediator heavier than ∼ 100 keV, though this is in ∼ 2σ

tension with current BBN bounds on Neff;

• DM interacting with the standard model via a ultralight kinetically mixed dark photon, and
where the DM is populated non-thermally through a mechanism such as freeze-in;

• A DM sub-component interacting with nucleons or electrons via a very light scalar or vector
mediator.

Given the importance of the BBN, CMB, and stellar cooling constraints in our understanding of sub-
GeV dark sectors, further exploration of these bounds and understanding their model-dependence is
certainly warranted.
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Appendix A: Vacuum stability for scalar χ model

The dark matter interactions in Eq. (6) and Eq.(42) contain a potential for the scalar χ and φ,

V ⊃ 1

2
m2
χχ

2 +
1

2
m2
φφ

2 +
1

2
yχmχφχ

2 (A1)

which is unbounded from below for finite χ and φ→ −∞. This issue is easily addressed by adding the
quartic couplings

V ⊃
λφ
4!
φ4 +

λχ
4!
χ4 +

λφχ
4
φ2χ2. (A2)

Even though the run-away direction is lifted if all quartics are positive, there may still be dangerous
false vacua. There is no completely general analytic solution for the positions and energies of the vacua
of this potential. However, we can check that there exist self-consistent choices for the quartics such
that the origin is the only critical point in the potential. We also require that the quartic couplings do
not affect our results on χ self-interactions and thermalization with the mediator, respectively.

In the light mediator regime, where mφ � mχ, the potential has a unique minimum at the origin
for λφ ≈ 1, λχ ≈ 0 and λφχ ≈ yχ. Since λφχ only contributes to the self-interaction cross section at
loop-level, its contribution can be neglected. λφχ does contribute to the φ-χ thermalization; however,
in the light mediator case there is no bound on this process since the dark sector is not in thermal
contact with the standard model below the QCD phase transition.

In the heavy mediator regime for the nucleon coupling model, where mφ & mχ, we always require
yχ � 1 due to the χ − φ thermalization constraint. For example, the following choice suffices to
stabilize the potential at the origin for mχ ≈ mφ and λφ ≈ 1:

λχ ≈ λφχ ≈ 10−10 , and yχ ≈ 10−4 (A3)

where the choice for yχ is representative for the values shown in the blue dashed line in Fig. 4. (For
smaller yχ, the vacuum stability condition clearly is easier to satisfy.) Since λφχ, λχ � y2

χ is possible,
the presence of these additional quartics can be neglected in both the thermalization and the self-
interaction computations.
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For the heavy mediator scenario with electron coupling, we allowed the mediator to thermalize with
the dark matter (see Section III C). Then yχ is bounded by SIDM constraints and can be as large as
≈ 0.1− 1. The following choice is enough to stabilize the potential

λχ ≈ λφχ ≈ 10−3 , and yχ ≈ 10−1, (A4)

again for mχ & mφ and λφ ≈ 1. Again since λφχ, λχ � y2
χ, the corrections to the χ self-interaction

cross section can be neglected for our purposes.
Finally, the perturbativity constraint requires that the one-loop correction to the 1

2yχmχφχ
2 cou-

pling is parametrically smaller than the tree-level contribution. In the non-relativistic limit, the one-
loop correction is given by

y3
χmχ

16π2

[
log
(
mφ
mχ

)
− mφ√

4m2
χ−m2

φ

(
tan−1 mφ√

4m2
χ−m2

φ

− tan−1 m2
φ−2m2

χ

mφ
√

4m2
χ−m2

φ

)]
(A5)

which we require to be smaller than yχmχ. In the mφ � mχ limit, the perturbativity constraint
simplifies to

y2
χ

16π2
< 1 , (A6)

while for mχ = mφ the result is

y2
χ

48
√

3π
< 1. (A7)

Both cases are consistent with the requirement of yχ . 4π from naive dimensional analysis. Throughout
this paper we conservatively impose yχ < 1.

Appendix B: Self-interaction cross sections

In this appendix, we review scattering of distinguishable dark matter particles. Here σT is the
transfer cross section, defined as the scattering cross section weighted by the momentum transfer,

σT =

∫
dΩ

dσ

dΩ
(1− cos θ). (B1)

In the Born approximation, where αχmχ/mφ � 1, the transfer cross section for DM interacting via a
Yukawa potential is [93]

σborn
T ≈

8πα2
χ

m2
χv

4

[
log(1 +R2)−R2/(1 +R2)

]
, (B2)

where R ≡ mχv/mφ. When the mediator is heavy, such that R � 1, the coupling constant corre-
sponding to a cross section of 1 cm2/g is

αχ . 0.02

(
1 keV
mχ

)1/2 ( mφ

1 MeV

)2
. (B3)
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For the ultra-light mediator limit where R & 1, we instead have

αχ . 10−10 ×
( mχ

1 MeV

)3/2
, (B4)

where we took v ∼ 10−3. Note that R & 1 also corresponds to the classical regime; in the classical
limit, and assuming an attractive potential, analytic formulae for the cross section have been obtained
that are valid even for the non-perturbative regime. However, the Born approximation is more accurate
for αχmχ/mφ � 1, even in the classical regime, and so we use the Born result everywhere.2 See for
example Refs. [94, 142]. Finally, comparing with the results in Section II B 2, we see that the limiting
forms of the self-interaction cross section and the resulting bounds on αχ are very similar despite the
different models considered.

Appendix C: Thermalization of the mediator

In Section IIC, we estimated when a light scalar mediator interacting with gluons would decouple
from the standard model thermal bath. A full calculation of the process gg → φg requires accounting for
thermal gluon masses, which further regulate the t−channel collinear divergence. For comparison, here
we review some results for light pseudoscalar thermalization with gluons that include finite temperature
effects.

We normalize the pseudoscalar-gluon coupling as αs
4ΛaG

a
µνG̃

a
µν where a is the pseudoscalar. Ref. [143]

found a pseudoscalar production rate of

γa =
α2
sζ(3)T 6

π3Λ2
F3(m3/T ) ' 4α2

sζ(3)T 6

(π)3Λ2
(C1)

where γa ∼ n2
gσv is the collision term in the Boltzmann equation and ng is the thermal gluon density.

Comparing γφ/ng with the Hubble expansion, this gives Λ . 3 × 109 GeV
√
T/GeV for a production

to be out of equilibrium at temperature T . Similarly, an earlier result using the Hard Thermal Loop
approximation found [144]

γa =
4ζ(3)αsT

6

π2Λ2
×
(

ln
T 2

m2
g

+ 0.4

)
, (C2)

resulting in a similar condition on Λ.
Assuming that the results above can also be applied to a scalar coupling with gluons, we find the

following condition on the scalar nucleon coupling:

yn . few× 10−10 (C3)

such that φ decouples from the thermal bath before the QCD phase transition. In the main text we
simply use yn . 10−9 as an approximate condition.

2 We thank Haibo Yu for this comment.
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Appendix D: In-medium couplings of light vectors

We begin by writing the vacuum Lagrangian in the basis where the kinetic-mixing term has been
rotated away, such that our discussion can be applied for the dark photon and for B − L. Consider
the vacuum Lagrangian

Lvac =− 1

4
FµνF

µν − 1

4
F ′µνF

′µν +
m2
A′

2
A′
µ
A′µ (D1)

+ JµEM

(
eAµ + gA′µ

)
+ gJµ

SM′
A′µ + gDMJ

µ
DMA

′
µ.

Here we have separated the coupling of the new A′ gauge boson to SM particles into two pieces, the
coupling to the EM current and everything else (accounted for in JSM′). Additionally, we include the
coupling of A′ with dark matter, which we write as gDM to account for a possible large hierarchy
between the A′ couplings with the SM and the dark matter.

Taking a coupling hierarchy e� g, in-medium effects generate mass terms

LIM−mass =
m2
A

2
AµAµ + εm2

AA
µA′µ, (D2)

where ε = g/e and mA is the in-medium mass of the photon due to the charged particle density. Now
we rotate to the mass basis by the choice

Aµ = Ãµ +
εm2

A

m2
A′ −m2

A

Ã′µ, A′µ = Ã′µ −
εm2

A

m2
A′ −m2

A

Ãµ, (D3)

such that the mass mixing is eliminated up to terms of order O(ε2). Then the total in-medium
Lagrangian, dropping the O(ε2) terms, becomes

LIM =− 1

4
F̃µνF̃

µν − 1

4
F̃ ′µνF̃

′µν +
m2
A

2
ÃµÃµ +

m2
A′

2
Ã′µÃ′µ + gJµ

SM′
Ã′µ

+ JµEM

(
eÃµ +

eεm2
A′

m2
A′ −m2

A

Ã′µ

)
+ gDMJ

µ
DM

(
Ã′µ −

εm2
A

m2
A′ −m2

A

Ãµ

)
. (D4)

Here we kept the terms of O(gDMε) since it is possible that gDM � g.
For the piece of the Ã′ coupling that is proportional to the EM current, the mass mixing implies

that the effective in-medium coupling will decouple in the limit mA′ � mA. In stars such as the sun,
mA can be of order keV, while mA ∼ 20MeV for SN1987A, leading a significant effect for low mass
vectors. This is familiar in the case of the dark photon where JSM′ = 0 and taking ε as the kinetic
mixing parameter. Here it is known that the in-medium kinetic mixing parameter is suppressed by
≈ m2

A′/m
2
A in the small mA′ limit. Due to a relative enhancement by ∼ E/mA′ for production of the

longitudinal modes, the resulting dominant stellar emission scales as εmA′ in the low mass limit [129–
131].

For B − L the same analysis applies, however there is also an interaction of the Ã′ with neutrons,
included in JSM′ . As shown above, this coupling does not decouple in the low mass limit, leading to
stellar constraints that are independent of mA′ . For the sun, HB stars, and RG stars, production off
of neutrons is a smaller contribution than production off of charged particles, so this effect is only
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relevant for mA′ well below an eV [70]. However, in a supernova the emission of A′ in nucleon-nucleon
scattering is important. As described in Section IVB, we thus obtain SN1987A bounds on B − L by
combining limits on dark photons from Ref. [85] and limits on U(1)B from Ref. [88], whichever gives
the larger effect for a given mA′ , g.

The interactions above also allow production of the DM in the star, via an off-shell Ã′ or off-shell
Ã. Although the coupling of Ã′ to SM charged particles is suppressed for mA′ � mA, from Eq. (D4)
the induced coupling of Ã with dark matter is given by εgDM in this limit. If gDM is relatively large,
then production of DM furnishes another form of stellar constraint, and we can apply limits derived
for the millicharged DM case taking QDM ≈ (εgDM/e). This can be directly translated to an upper
bound on the direct detection cross section (in addition to the constraints on ε and gDM from stellar
emission and self-interactions, respectively).
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