96 research outputs found

    An intelligent decision support system for editors

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24874/1/0000301.pd

    Reply to Comments of Bassi, Ghirardi, and Tumulka on the Free Will Theorem

    Get PDF
    We show that the authors in the title have erred in claiming that our axiom FIN is false by conflating it with Bell locality. We also argue that the predictions of quantum mechanics, and in particular EPR, are fully Lorentz invariant, whereas the Free Will Theorem shows that theories with a mechanism of reduction, such as GRW, cannot be made fully invariant.Comment: We sharpen our theorem by replacing axiom FIN by a weaker axiom MIN to answer the above authors' objection

    The Free Will Theorem

    Full text link
    On the basis of three physical axioms, we prove that if the choice of a particular type of spin 1 experiment is not a function of the information accessible to the experimenters, then its outcome is equally not a function of the information accessible to the particles. We show that this result is robust, and deduce that neither hidden variable theories nor mechanisms of the GRW type for wave function collapse can be made relativistic. We also establish the consistency of our axioms and discuss the philosophical implications.Comment: 31 pages, 6figure

    Kochen-Specker Theorem for Finite Precision Spin One Measurements

    Full text link
    Unsharp spin 1 observables arise from the fact that a residual uncertainty about the actual orientation of the measurement device remains. If the uncertainty is below a certain level, and if the distribution of measurement errors is covariant under rotations, a Kochen-Specker theorem for the unsharp spin observables follows: There are finite sets of directions such that not all the unsharp spin observables in these directions can consistently be assigned approximate truth-values in a non-contextual way.Comment: 4 page

    Kochen-Specker theorem studied with neutron interferometer

    Get PDF
    The Kochen-Specker theorem theoretically shows evidence of the incompatibility of noncontextual hidden variable theories with quantum mechanics. Quantum contextuality is a more general concept than quantum non-locality which is quite well tested in experiments by using Bell inequalities. Within neutron interferometry we performed an experimental test of the Kochen-Specker theorem with an inequality, which identifies quantum contextuality, by using spin-path entanglement in a single neutron system. Here entanglement is achieved not between different particles, but between degrees of freedom, i.e., between spin and path degree of freedom. Appropriate combinations of the spin analysis and the position of the phase shifter allow an experimental verification of the violation of an inequality of the Kochen-Specker theorem. The observed value of (2.291 +/- 0.008), which is above the threshold of 1, clearly shows that quantum mechanical predictions cannot be reproduced by noncontextual hidden variable theories.Comment: 5 pages, 3 figure
    • …
    corecore