3,501 research outputs found

    Predicting the Sources and Formation Mechanisms of Evolved Lunar Crust by Linking K/Ca Ratios of Lunar Granites to Analogous Terrestrial Igneous Rocks

    Get PDF
    Although silicic rocks (i.e. granites and rhyolites) comprise a minor component of the sampled portion of the lunar crust, recent remote sensing studies [e.g., 1-4] indicate that several un-sampled regions of the Moon have significantly higher concentrations of silicic material (also high in [K], [U], and [Th]) than sampled regions. Within these areas are morphological features that are best explained by the existence of chemically evolved volcanic rocks. Observations of silicic domes [e.g., 1-5] suggest that sizable networks of silicic melt were present during crust formation. Isotopic data indicate that silicic melts were generated over a prolonged timespan from 4.3 to 3.9 Ga [e.g., 6-8]. The protracted age range and broad distribution of silicic rocks on the Moon indicate that their petrogenesis was an important mechanism for secondary crust formation. Understanding the origin and evolution of such silicic magmas is critical to determining the composition of the lunar crustal highlands and will help to distinguish between opposing ideas for the Moon's bulk composition and differentiation. The two main hypotheses for generating silicic melts on Earth are fractional crystallization or partial melting. On the Moon silicic melts are thought to have been generated during extreme fractional crystallization involving end-stage silicate liquid immiscibility (SLI) [e.g. 9, 10]. However, SLI cannot account for the production of significant volumes of silicic melt and its wide distribution, as reported by the remote global surveys [1, 2, 3]. In addition, experimental and natural products of SLI show that U and Th, which are abundant in the lunar granites and seen in the remote sensing data of the domes, are preferentially partitioned into the depolymerized ferrobasaltic magma and not the silicic portion [11, 12]. If SLI is not the mechanism that generated silicic magmas on the Moon then alternative processes such as fractional crystallization (only crystal-liquid separation) or partial melting should be considered as viable possibilities to be tested

    A Thorough Search for Elusive Lunar Granophyres

    Get PDF
    Recent remote sensing studies [e.g., 1-3] indicate that several un-sampled regions of the Moon have significantly higher concentrations of silicic material (also high in [K], [U], and [Th]) than sampled regions. Within these areas are morphological features that are best explained by the existence of chemically evolved volcanic rocks. Observations of silicic domes [e.g., 1-5] suggest that sizable networks of silicic melt were present during crust-formation. Because of these recent findings there is a renewed interest in the petrogenesis of lunar, felsic igneous rocks. Specific questions are: (1) when were these magmas generated?, and (2) what was the source material? The two main hypotheses for generating silicic melts on Earth are fractional crystallization or partial melting of preexisting crust. On the Moon silicic melts are thought to have been generated during extreme fractional crystallization involving end-stage silicate liquid immiscibility (SLI) [e.g. 6, 7]. However, SLI cannot account for the production of significant volumes of silicic melt and its wide distribution, as reported by the remote global surveys [1, 2, 3]. In addition, experimental and natural products of SLI show that U and Th, which are abundant in the lunar granites and seen in the remote sensing data of the domes, are preferentially partitioned into the depolymerized ferrobasaltic magma and not the silicic portion [8, 9]. If SLI is not the mechanism that generated silicic magmas on the Moon then alternative processes such as fractional crystallization (only crystal-liquid separation) or partial melting should be considered as viable possibilities to be tested

    A Procedure to Determine the Coordinated Chromium and Calcium Isotopic Composition of Astromaterials Including the Chelyabinsk Meteorite

    Get PDF
    The isotopic compositions of elements are often used to characterize nucelosynthetic contributions in early Solar System objects. Coordinated multiple middle-mass elements with differing volatilities may provide information regarding the location of condensation of early Solar System solids. Here we detail new procedures that we have developed to make high-precision multi-isotope measurements of chromium and calcium using thermal ionization mass spectrometry, and characterize a suite of chondritic and terrestrial material including two fragments of the Chelyabinsk LL-chondrite

    Chemical Zoning of Feldspars in Lunar Granitoids: Implications for the Origins of Lunar Silicic Magmas

    Get PDF
    Fine-scale chemical and textural measurements of alkali and plagioclase feldspars in the Apollo granitoids (ex. Fig. 1) can be used to address their petrologic origin(s). Recent findings suggest that these granitoids may hold clues of global importance, rather than of only local significance for small-scale fractionation. Observations of morphological features that resemble silicic domes on the unsampled portion of the Moon suggest that local, sizable net-works of high-silica melt (>65 wt % SiO2) were present during crust-formation. Remote sensing data from these regions suggest high concentrations of Si and heat-producing elements (K, U, and Th). To help under-stand the role of high-silica melts in the chemical differentiation of the Moon, three questions must be answered: (1) when were these magmas generated?, (2) what was the source material?, and (3) were these magmas produced from internal differentiation. or impact melting and crystallization? Here we focus on #3. It is difficult to produce high-silica melts solely by fractional crystallization. Partial melting of preexisting crust may therefore also have been important and pos-sibly the primary mechanism that produced the silicic magmas on the Moon. Experimental studies demonstrate that partial melting of gabbroic rock under mildly hydrated conditions can produce high-silica compositions and it has been suggested by that partial melting by basaltic underplating is the mechanism by which high-silica melts were produced on the Moon. TEM and SIMS analyses, coordinated with isotopic dating and tracer studies, can help test whether the minerals in the Apollo granitoids formed in a plutonic setting or were the result of impact-induced partial melting. We analyzed granitoid clasts from 3 Apollo samples: polymict breccia 12013,141, crystalline-matrix breccia 14303,353, and breccia 15405,7

    Microstructural and Compositional Relations of Granitoid Clasts in Lunar Breccias at the Micrometer to Sub-Micrometer Scale

    Get PDF
    Lunar granitoid lithologies have long been of interest for the information they provide on processes leading to silicic melt compositions on the Moon. The extraction of such melts over time affects the distribution and budget of incompatible materials (i.e., radiogenic heat producing elements and volatiles) of the lunar interior. We have recently shown that in addition to their high concentrations of incompatible lithophile elements, some granitoid clasts in lunar breccias have significant indigenous water contents in their alkali feldspars. This raises the importance of lunar granitoid materials in the expanding search for mineralogic/petrologic hosts of indigenous lunar water-related species. We are undertaking a detailed survey of the petrologic/mineralogical relations of granitoid clasts in lunar breccias to achieve a better understanding of the potential of these diverse assemblages as hosts for volatiles, and as candidates for additional isotope chronology studies. Our preliminary results reported here based on high-resolution field-emission SEM, EPMA and TEM studies uncover immense complexity in these materials at the micrometer to sub-micrometer scale that heretofore have not been fully documented

    A randomised controlled trial of the effect of providing online risk information and lifestyle advice for the most common preventable cancers: study protocol

    Get PDF
    Abstract Background Cancer is a leading cause of mortality and morbidity worldwide. Prevention is recognised by many, including the World Health Organization, to offer the most cost-effective long-term strategy for the control of cancer. One approach that focuses on individuals is the provision of personalised risk information. However, whether such information motivates behaviour change and whether the effect is different with varying formats of risk presentation is unclear. We aim to assess the short-term effect of providing information about personalised risk of cancer in three different formats alongside lifestyle advice on health-related behaviours, risk perception and risk conviction. Methods In a parallel group, randomised controlled trial 1000 participants will be recruited through the online platform Prolific. Participants will be allocated to either a control group receiving cancer-specific lifestyle advice alone or one of three intervention groups receiving the same lifestyle advice alongside their estimated 10-year risk of developing one of the five most common preventable cancers, calculated from self-reported modifiable behavioural risk factors, in one of three different formats (bar chart, pictograph or qualitative scale). The primary outcome is change from baseline in computed risk relative to an individual with a recommended lifestyle at three months. Secondary outcomes include: perceived risk of cancer; anxiety; cancer-related worry; intention to change behaviour; and awareness of cancer risk factors. Discussion This study will provide evidence on the short-term effect of providing online information about personalised risk of cancer alongside lifestyle advice on risk perception and health-related behaviours and inform the development of interventions. Trial registration ISRCTN17450583. Registered 30 January 2018

    Surfaces roughness effects on the transmission of Gaussian beams by anisotropic parallel plates

    Full text link
    Influence of the plate surfaces roughness in precise ellipsometry experiments is studied. The realistic case of a Gaussian laser beam crossing a uniaxial platelet is considered. Expression for the transmittance is determined using the first order perturbation theory. In this frame, it is shown that interference takes place between the specular transmitted beam and the scattered field. This effect is due to the angular distribution of the Gaussian beam and is of first order in the roughness over wavelength ratio. As an application, a numerical simulation of the effects of quartz roughness surfaces at normal incidence is provided. The interference term is found to be strongly connected to the random nature of the surface roughness.Comment: 18 pages, Journal of Physics D: Applied Physics, volume 36, issue 21, pages 2697 - 270

    Water in alkali feldspar: The effect of rhyolite generation on the lunar hydrogen budget

    Get PDF
    Recent detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass (Saal et al., 2008), melt inclusions (Hauri et al., 2011), apatite (Boyce et al., 2010; McCubbin et al., 2010), and plagioclase (Hui et al., 2013) suggests water played a role in the chemical differentiation of the Moon. Water contents measured in plagioclase feldspar, a dominant mineral in the ancient crustal lunar highlands have been used to predict that 320 ppm water initially existed in the lunar magma ocean (Hui et al., 2013) whereas measurements in apatite, found as a minor mineral in lunar rocks, representing younger potassium-enriched melt predict a bulk Moon with <100 ppm water. Here we show that water in alkali feldspar, a common mineral in potassium-enriched rocks, can have ∼20 ppm water, which implies magmatic water contents of ∼1 wt. % in chemically evolved rhyolitic magmas. The source for these wet, potassium-rich magmas probably contained ∼1000 ppm H2O. Thus, lunar granites with ages from 4.3-3.9 Ga (Meyer et al., 1996) likely crystallised from relatively wet melts that degassed upon crystallisation. Geochemical surveys by the Lunar Prospector (Jolliff et al., 2011) and Diviner Lunar Radiometer Experiment (Glotch et al., 2010; Jolliff et al., 2011) indicating the global significance of evolved igneous rocks suggest that the formation of these granites removed water from some mantle source regions, helping to explain the existence of mare basalts with <10 ppm water, but must have left regions of the interior relatively wet as seen by the water content in volcanic glass and melt inclusions. Although these early-formed evolved melts were water-rich, their petrogenesis supports the conclusion that the Moon's mantle had <100 ppm water for most of its history
    • …
    corecore