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Introduction: Although silicic rocks (i.e. granites 

and rhyolites) comprise a minor component of the 

sampled portion of the lunar crust, recent remote sens-

ing studies [e.g., 1-4] indicate that several un-sampled 

regions of the Moon have significantly higher concen-

trations of silicic material (also high in [K], [U], and 

[Th]) than sampled regions. Within these areas are 

morphological features that are best explained by the 

existence of chemically evolved volcanic rocks. Ob-

servations of silicic domes [e.g., 1-5] suggest that siz-

able networks of silicic melt were present during crust 

formation. Isotopic data indicate that silicic melts were 

generated over a prolonged timespan from 4.3 to 3.9 

Ga [e.g., 6-8]. The protracted age range and broad dis-

tribution of silicic rocks on the Moon indicate that their 

petrogenesis was an important mechanism for secon-

dary crust formation. Understanding the origin and 

evolution of such silicic magmas is critical to deter-

mining the composition of the lunar crustal highlands 

and will help to distinguish between opposing ideas for 

the Moon’s bulk composition and differentiation.  

The two main hypotheses for generating silicic 

melts on Earth are fractional crystallization or partial 

melting. On the Moon silicic melts are thought to have 

been generated during extreme fractional crystalliza-

tion involving end-stage silicate liquid immiscibility 

(SLI) [e.g. 9, 10]. However, SLI cannot account for the 

production of significant volumes of silicic melt and its 

wide distribution, as reported by the remote global 

surveys [1, 2, 3]. In addition, experimental and natural 

products of SLI show that U and Th, which are abun-

dant in the lunar granites and seen in the remote sens-

ing data of the domes, are preferentially partitioned 

into the depolymerized ferrobasaltic magma and not 

the silicic portion [11, 12]. If SLI is not the mechanism 

that generated silicic magmas on the Moon then alter-

native processes such as fractional crystallization (only 

crystal-liquid separation) or partial melting should be 

considered as viable possibilities to be tested. 

Fractional crystallization of a basaltic source with-

out SLI is an inefficient process for generating silicic 

melts. This is because the distilling process must pro-

ceed to completion, which is physically difficult in 

terms of the degree of crystallization. For example, on 

the Moon a basaltic magma with K2O/CaO of ~0.03 

must fractionate to ~8 (granite clast from 14321). Fig-

ure 1 shows the relationship between crystallization 

and the predicted fractionation of K and Ca during 

magma ocean solidification. Results indicate that it is 

unlikely that fractional crystallization alone can pro-

duce K/Ca ratios greater than 0.2. Likewise, segrega-

tion and extraction of highly-polymerized viscous melt 

from a highly crystalline mush is nearly impossible 

without strong external forces [13] (e.g., gravitational 

and/or secondary impacts).  

Because it is difficult to produce such chemically 

“evolved” melts solely by fractional crystallization, 

partial melting of preexisting crust may also have been 

important and possibly the primary mechanism which 

produced the silicic magmas on the Moon. Terrestrial 

studies (e.g., [14]) demonstrate that partial melting of 

gabbroic rock under mildly hydrated conditions can 

produce granitic compositions and it has been sug-

gested by [1] that partial melting by basaltic underplat-

ing is the mechanism by which silicic melts were pro-

duced on the Moon. Isotopic and elemental data can 

help decipher what source rocks were partially melted 

and when the melting occurred.  

K/Ca isotopic data from a mineral isochron [15] for 

a granite clast from sample 14321 indicate that the 

parental material of this silicic magma had a K2O/CaO 

ratio of at least 0.8, significantly higher than most 

known crustal rock types, including KREEP-rich mate-

rials [e.g. 16, 17]. This suggests that granite in sample 

14321 was produced by partial melting of an already 

“evolved” rock. Next we use terrestrial chemical data 

as a proxy for igneous rocks in the lunar crust which 

allow us to hypothesize what type of rock may have 

been parental to granite found in Apollo breccia sam-

ple 14321. 

Terrestrial data:  Geochemical data for igneous 

rocks from the western United States were extracted 

from the NAVDAT online repository. The ~4000 data 

with variable L.O.I. represent multiple tectonic set-

tings, including subduction, rifting and anorogenic; 

however, the ~2200 data from low L.O.I. rocks (likely 

from relatively dry magmas) define a similar trend on a 

plot of K2O/CaO vs SiO2.  

Interpretation: Data from Apollo sample 14321 

granite clast [15] indicate that the parental material to 

the granite had already evolved on a K2O/CaO trend of 

approximately 1, consistent with an intermediate/felsic 

terrestrial magma (Fig. 2). One of the objections to the 

fractional crystallization model is the lack of interme-

diate compositions. Taken at face value, the bulk com-

position implied by the data of [15] could represent an 
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example of the missing intermediate composition, al-

though it does not provide a unique solution to the 

problem. More evidence of this type is needed to criti-

cal test the mechanism(s) that generated silicic mag-

mas on the Moon.  

Next Step: Future investigations will carryout ex-

tensive searches for additional evolved igneous rock 

clasts in Apollo samples and lunar meteorites primarily 

for K-Ca isotope measurements. As in [15], these data 

will be used to define the bulk compositions of the 

source(s) of evolved materials that  make up the lunar 

crust. The search for source(s) will be further refined 

by comparison of radiogenic isotope compositions 

(inferred initial 40Ca/44Ca, 87Sr/86Sr, and 176Hf/177Hf 

isotopic compositions and isochron ages) in these 

clasts to the compositions of known lunar rock types. 

 

 
Fig. 1 (A) Plot of CaO vs crystal fraction of the Moon with 

experimental results [18] from equilibrium crystallization of 

a Taylor Whole Moon (TWM) composition at 1, 2 and 4 

GPa, and modeled results of equilibrium then fractional crys-

tallization [19]. (B) Plot of K2O/CaO (log-scale) vs crystal 

fraction of the Moon with data from [18] and modeled values 

using CaO values from [19] and assuming K behaves com-

pletely incompatible.  

 
Fig. 2 (A) Plot of K2O/CaO vs SiO2 with 4000 igneous rocks 

from the western US with variable L.O.I. and 2200 igneous 

rocks from the western US with L.O.I. < 0.5 % (all data ex-

tracted from www.navdat.org). Gray bar is the calculated 

K2O/CaO ratio of the parental material for granite clast from 

Apollo sample 14321 [15], and yellow bar is the upper esti-

mate using the FAN age from [20] (B) Histogram of SiO2 for 

data that fall in the gray bar and yellow bar in A. 
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