68,203 research outputs found
The non-Gaussianity of the cosmic shear likelihood - or: How odd is the Chandra Deep Field South?
(abridged) We study the validity of the approximation of a Gaussian cosmic
shear likelihood. We estimate the true likelihood for a fiducial cosmological
model from a large set of ray-tracing simulations and investigate the impact of
non-Gaussianity on cosmological parameter estimation. We investigate how odd
the recently reported very low value of really is as derived from
the \textit{Chandra} Deep Field South (CDFS) using cosmic shear by taking the
non-Gaussianity of the likelihood into account as well as the possibility of
biases coming from the way the CDFS was selected.
We find that the cosmic shear likelihood is significantly non-Gaussian. This
leads to both a shift of the maximum of the posterior distribution and a
significantly smaller credible region compared to the Gaussian case. We
re-analyse the CDFS cosmic shear data using the non-Gaussian likelihood.
Assuming that the CDFS is a random pointing, we find
for fixed . In a
WMAP5-like cosmology, a value equal to or lower than this would be expected in
of the times. Taking biases into account arising from the way the
CDFS was selected, which we model as being dependent on the number of haloes in
the CDFS, we obtain . Combining the CDFS data
with the parameter constraints from WMAP5 yields and for a flat
universe.Comment: 18 pages, 16 figures, accepted for publication in A&A; New Bayesian
treatment of field selection bia
An effective Hamiltonian for phase fluctuations on a lattice: an extended XY model
We derive an effective Hamiltonian for phase fluctuations in an s-wave
superconductor starting from the attractive Hubbard model on a square lattice.
In contrast to the common assumption, we find that the effective Hamiltonian is
not the usual XY model but is of an extended XY type. This extended feature is
robust and leads to essential corrections in understanding phase fluctuations
on a lattice. The effective coupling in the Hamiltonian varies significantly
with temperature.Comment: 2 figure
On the use of the Fourier Transform to determine the projected rotational velocity of line-profile variable B stars
The Fourier Transform method is a popular tool to derive the rotational
velocities of stars from their spectral line profiles. However, its domain of
validity does not include line-profile variables with time-dependent profiles.
We investigate the performance of the method for such cases, by interpreting
the line-profile variations of spotted B stars, and of pulsating B tars, as if
their spectral lines were caused by uniform surface rotation along with
macroturbulence. We perform time-series analysis and harmonic least-squares
fitting of various line diagnostics and of the outcome of several
implementations of the Fourier Transform method. We find that the projected
rotational velocities derived from the Fourier Transform vary appreciably
during the pulsation cycle whenever the pulsational and rotational velocity
fields are of similar magnitude. The macroturbulent velocities derived while
ignoring the pulsations can vary with tens of km/s during the pulsation cycle.
The temporal behaviour of the deduced rotational and macroturbulent velocities
are in antiphase with each other. The rotational velocity is in phase with the
second moment of the line profiles. The application of the Fourier method to
stars with considerable pulsational line broadening may lead to an appreciable
spread in the values of the rotation velocity, and, by implication, of the
deduced value of the macroturbulence. These two quantities should therefore not
be derived from single snapshot spectra if the aim is to use them as a solid
diagnostic for the evaluation of stellar evolution models of slow to moderate
rotators.Comment: 13 pages, 9 figures, accepted for publication in Astronomy &
Astrophysic
Towards a generalized theory of low-frequency sound source localization
Low-frequency sound source localization generates considerable amount of disagreement between audio/acoustics researchers, with some arguing that below a certain frequency humans cannot localize a source with others insisting that in certain cases localization is possible, even down to the lowest audible of frequencies. Nearly all previous work in this area depends on subjective evaluations to formulate theorems for low-frequency localization. This, of course, opens the argument of data reliability, a critical factor that may go some way to explain the reported ambiguities with regard to low-frequency localization. The resulting proposal stipulates that low-frequency source localization is highly dependent on room dimensions, source/listener location and absorptive properties. In some cases, a source can be accurately localized down to the lowest audible of frequencies, while in other situations it cannot. This is relevant as the standard procedure in live sound reinforcement, cinema sound and home-theater surround sound is to have a single mono channel for the low-frequency content, based on the assumption that human’s cannot determine direction in this band. This work takes the first steps towards showing that this may not be a universally valid simplification and that certain sound reproduction systems may actually benefit from directional low-frequency content
Recommended from our members
Improving LMOF luminescence quantum yield through guest-mediated rigidification
Rotation of a specific pyridyl ring in LMOF-236 is locked by loading guest molecules into the MOF's pore, improving quantum yield by nearly 400%–an example of a generalizable strategy for maximizing quantum yield via guest-packing rigidification
- …