745 research outputs found

    A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic

    Get PDF
    Global deep‐time plate motion models have traditionally followed a classical rigid plate approach, even though plate deformation is known to be significant. Here we present a global Mesozoic–Cenozoic deforming plate motion model that captures the progressive extension of all continental margins since the initiation of rifting within Pangea at ~240 Ma. The model also includes major failed continental rifts and compressional deformation along collision zones. The outlines and timing of regional deformation episodes are reconstructed from a wealth of published regional tectonic models and associated geological and geophysical data. We reconstruct absolute plate motions in a mantle reference frame with a joint global inversion using hot spot tracks for the last 80 million years and minimizing global trench migration velocities and net lithospheric rotation. In our optimized model, net rotation is consistently below 0.2°/Myr, and trench migration scatter is substantially reduced. Distributed plate deformation reaches a Mesozoic peak of 30 × 106 km2 in the Late Jurassic (~160–155 Ma), driven by a vast network of rift systems. After a mid‐Cretaceous drop in deformation, it reaches a high of 48 x 106 km2 in the Late Eocene (~35 Ma), driven by the progressive growth of plate collisions and the formation of new rift systems. About a third of the continental crustal area has been deformed since 240 Ma, partitioned roughly into 65% extension and 35% compression. This community plate model provides a framework for building detailed regional deforming plate networks and form a constraint for models of basin evolution and the plate‐mantle system

    UniversitÀres Alumni-Management in Online Social Networks

    Get PDF
    Online Social Networks (OSN) bieten eine ausgezeichnete Möglichkeit fĂŒr Hochschulen, ihre ehemaligen Studierenden zu vernetzen. Ziel dieses Artikels ist es, den State of the Art der Nutzung von OSN fĂŒr die Alumni Arbeit zu beschreiben. Hierzu haben wir mit einer dreistufigen Suchstrategie fĂŒr insgesamt 109 deutsche UniversitĂ€ten deren PrĂ€senzen fĂŒr Alumni Gemeinschaften identifiziert, ausgewertet und miteinander verglichen. Die Ergebnisse verdeutlichen große Unterschiede. Nur wenige UniversitĂ€ten verzichten auf die Nutzung eines OSN fĂŒr die Alumni Arbeit, in der Regel nutzen sie mehrere. Die auf geschĂ€ftliche Ziele ausgerichteten Netze Xing und LinkedIn werden bevorzugt. Anhand der Indikatoren Reichweite, AktivitĂ€t und Resonanz haben wir Ranglisten erstellt, die zeigen, welche UniversitĂ€ten sich in der Spitzengruppe befinden und welche noch Nachholbedarf haben

    Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching

    Get PDF
    The relief of the South Atlantic is characterized by elevated passive continental margins along southern Africa and eastern Brazil, and by the bathymetric asymmetry of the southern oceanic basin where the western flank is much deeper than the eastern flank. We investigate the origin of these topographic features in the present and over time since the Jurassic with a model of global mantle flow and lithospheric deformation. The model progressively assimilates plate kinematics, plate boundaries and lithospheric age derived from global tectonic reconstructions with deforming plates, and predicts the evolution of mantle temperature, continental crustal thickness, long-wavelength dynamic topography, and isostatic topography. Mantle viscosity and the kinematics of the opening of the South Atlantic are adjustable parameters in thirteen model cases. Model predictions are compared to observables both for the present-day and in the past. Present-day predictions are compared to topography, mantle tomography, and an estimate of residual topography. Predictions for the past are compared to tectonic subsidence from backstripped borehole data along the South American passive margin, and to dynamic uplift as constrained by thermochronology in southern Africa. Comparison between model predictions and observations suggests that the first-order features of the topography of the South Atlantic are due to long-wavelength dynamic topography, rather than to asthenospheric processes. The uplift of southern Africa is best reproduced with a lower mantle that is at least 40 times more viscous than the upper mantle

    25^{25}O - Beyond the Neutron Dripline

    Get PDF

    Pharmacokinetically-guided dosing to improve the efficacy of brigatinib in non-small cell lung cancer patients

    Get PDF
    Brigatinib was recently approved for the treatment of anaplastic lymphoma kinase-positive non-small cell lung cancer and is dosed according to a one-dose-fits-all paradigm. We aimed to identify a pharmacokinetically-guided precision dosing strategy to improve treatment response with brigatinib through simulations using a previously published pharmacokinetic-pharmacodynamic model. Dosing strategies explored were the approved 180 mg QD; the highest tolerable dose tested in clinical trials: 240 mg QD; and two precision dosing strategies targeting the median trough concentrations following 180 mg QD, and 240 mg QD. We investigated the impact of alternative dosing regimens on progression-free survival (PFS), overall survival (OS) and the probability of developing a grade ≄2 rash or grade ≄2 amylase increase. Median PFS and OS increased by 1.6 and 7.8 months, respectively between the currently approved dosing strategy and precision dosing to the median trough concentration of the 240 mg dosing strategy, with only a minor increase in the probability of developing toxicity

    Dewar Benzenoids Discovered in Carbon Nanobelts

    Get PDF
    © 2020 American Chemical Society. The synthesis of cyclacene nanobelts remains an elusive goal dating back over 60 years. These molecules represent the last unsynthesized building block of carbon nanotubes and may be useful both as seed molecules for the preparation of structurally well-defined carbon nanotubes and for understanding the behavior and formation of zigzag nanotubes more broadly. Here we report the discovery that isomers containing two Dewar benzenoid rings are the preferred form for several sizes of cyclacene. The predicted lower polyradical character and higher singlet-triplet stability that these isomers possess compared with their pure benzenoid counterparts suggest that they may be more stable synthetic targets than the structures that have previously been identified. Our findings should facilitate the exploration of new routes to cyclacene synthesis through Dewar benzene chemistry

    Global patterns in Earth's dynamic topography since the Jurassic: the role of subducted slabs

    Get PDF
    We evaluate the spatial and temporal evolution of Earth's long-wavelength surface dynamic topography since the Jurassic using a series of high-resolution global mantle convection models. These models are Earth-like in terms of convective vigour, thermal structure, surface heat-flux and the geographic distribution of heterogeneity. The models generate a degree-2-dominated spectrum of dynamic topography with negative amplitudes above subducted slabs (i.e. circum-Pacific regions and southern Eurasia) and positive amplitudes elsewhere (i.e. Africa, north-western Eurasia and the central Pacific). Model predictions are compared with published observations and subsidence patterns from well data, both globally and for the Australian and southern African regions. We find that our models reproduce the long-wavelength component of these observations, although observed smaller-scale variations are not reproduced. We subsequently define geodynamic rules for how different surface tectonic settings are affected by mantle processes: (i) locations in the vicinity of a subduction zone show large negative dynamic topography amplitudes; (ii) regions far away from convergent margins feature long-term positive dynamic topography; and (iii) rapid variations in dynamic support occur along the margins of overriding plates (e.g. the western US) and at points located on a plate that rapidly approaches a subduction zone (e.g. India and the Arabia Peninsula). Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution, thus improving our understanding of how subduction and mantle convection affect the spatio-temporal evolution of basin architecture.This research was supported by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia and with the assistance of resources from the National Computational Infrastructure (NCI), which is supported by the Australian Government. Sascha Brune was funded by the Marie Curie International Outgoing Fellowship 326115 and the Helmholtz Young Investigators Group CRYSTALS. Christian Heine was supported by ARC Linkage Project LP0989312 with Shell E & P and TOTAL. D. Rhodri Davies is funded by an ARC Future Fellowship (FT140101262) and Simon Williams and R. Dietmar MĂŒller are supported by ARC grants DP130101946 and IH13020001

    Epidemiology and Characteristics of Gastric Carcinoma in Childhood : An Analysis of Data from Population-Based and Clinical Cancer Registries

    Get PDF
    (1) Background: Gastric carcinoma is an exceptionally rare tumor in childhood. Little is known about the etiology, epidemiology, and clinical features of pediatric gastric carcinomas. This analysis aimed to fill this gap by increasing knowledge about the occurrence of gastric carcinoma in childhood. (2) Material and methods: Data from gastric carcinoma cases diagnosed between 2000 and 2017/2018 were retrieved from the Surveillance, Epidemiology, and End Results Program (SEER) and the German Center for Cancer Registry Data. Data from patients <20 years of age were analyzed for patient- and tumor-related characteristics. In addition, clinical data from patients with gastric carcinoma registered in the German Registry for Rare Pediatric Tumors (STEP) were analyzed for diagnostics, therapy, and outcome. (3) Results: Ninety-one cases of gastric carcinoma, mainly in adolescents, were identified in the epidemiologic cancer registries. Among patients with recorded staging data, advanced tumor stages were common (66.7%). Within the follow-up period covered, 63.7% of patients with clinical follow-up data died. Eight pediatric patients with gastric carcinoma were enrolled in the STEP registry, among whom two were patients with hereditary CDH1 mutations and another was a patient with Peutz–Jeghers syndrome. Three patients were found to have distinctly decreased immunoglobulin concentrations. All four patients in whom complete resection was achieved remained in remission. Three of the other four patients died despite multimodal therapy. (4) Conclusions: A combination of Helicobacter pylori infection and tumor predisposition and/or immunodeficiency appears to promote the development of gastric carcinoma in childhood. While patients with localized disease stages have a good chance of achieving durable remission through complete resection, patients with stage IV carcinomas face a dismal prognosis, highlighting the need to develop new strategies such as mutation-guided treatments

    A global plate model including lithospheric deformation along major rifts and orogens since the Triassic

    Get PDF
    Global deep‐time plate motion models have traditionally followed a classical rigid plate approach, even though plate deformation is known to be significant. Here we present a global Mesozoic–Cenozoic deforming plate motion model that captures the progressive extension of all continental margins since the initiation of rifting within Pangea at ~240 Ma. The model also includes major failed continental rifts and compressional deformation along collision zones. The outlines and timing of regional deformation episodes are reconstructed from a wealth of published regional tectonic models and associated geological and geophysical data. We reconstruct absolute plate motions in a mantle reference frame with a joint global inversion using hot spot tracks for the last 80 million years and minimizing global trench migration velocities and net lithospheric rotation. In our optimized model, net rotation is consistently below 0.2°/Myr, and trench migration scatter is substantially reduced. Distributed plate deformation reaches a Mesozoic peak of 30 × 10^6 km^2 in the Late Jurassic (~160–155 Ma), driven by a vast network of rift systems. After a mid‐Cretaceous drop in deformation, it reaches a high of 48 x 10^6 km^2 in the Late Eocene (~35 Ma), driven by the progressive growth of plate collisions and the formation of new rift systems. About a third of the continental crustal area has been deformed since 240 Ma, partitioned roughly into 65% extension and 35% compression. This community plate model provides a framework for building detailed regional deforming plate networks and form a constraint for models of basin evolution and the plate‐mantle system
    • 

    corecore