16 research outputs found

    Calibration of optical tweezers with positional detection in the back-focal-plane

    Full text link
    We explain and demonstrate a new method of force- and position-calibration for optical tweezers with back-focal-plane photo detection. The method combines power spectral measurements of thermal motion and the response to a sinusoidal motion of a translation stage. It consequently does not use the drag coefficient of the trapped ob ject as an input. Thus, neither the viscosity, nor the size of the trapped ob ject, nor its distance to nearby surfaces need to be known. The method requires only a low level of instrumentation and can be applied in situ in all spatial dimensions. It is both accurate and precise: true values are returned, with small error-bars. We tested this experimentally, near and far from surfaces. Both position- and force-calibration were accurate to within 3%. To calibrate, we moved the sample with a piezo-electric translation stage, but the laser beam could be moved instead, e.g. by acousto-optic deflectors. Near surfaces, this precision requires an improved formula for the hydrodynamical interaction between an infinite plane and a micro-sphere in non-constant motion parallel to it. We give such a formula.Comment: Submitted to: Review of Scientific Instruments. 13 pages, 5 figures. Appendix added (hydrodynamically correct calibration

    Stepwise bending of DNA by a single TATA-box Binding Protein

    Full text link
    The TATA-box Binding Protein (TBP) is required by all three eukaryotic RNA polymerases for the initiation of transcription from most promoters. TBP recognizes, binds to, and bends promoter sequences called ``TATA-boxes'' in the DNA. We present results from the study of individual Saccharomyces cerevisia TBPs interacting with single DNA molecules containing a TATA-box. Using video microscopy, we observed the Brownian motion of beads tethered by short surface-bound DNA. When TBP binds to and bends the DNA, the conformation of the DNA changes and the amplitude of Brownian motion of the tethered bead is reduced compared to that of unbent DNA. We detected individual binding and dissociation events and derived kinetic parameters for the process. Dissociation was induced by increasing the salt concentration or by directly pulling on the tethered bead using optical tweezers. In addition to the well-defined free and bound classes of Brownian motion, we observed another two classes of motion. These extra classes were identified with intermediate states on a three-step, linear binding pathway. Biological implications of the intermediate states are discussed.Comment: Accepted for publication in: Biophysical Journa

    Persistent Cell Motion in the Absence of External Signals: A Search Strategy for Eukaryotic Cells

    Get PDF
    Eukaryotic cells are large enough to detect signals and then orient to them by differentiating the signal strength across the length and breadth of the cell. Amoebae, fibroblasts, neutrophils and growth cones all behave in this way. Little is known however about cell motion and searching behavior in the absence of a signal. Is individual cell motion best characterized as a random walk? Do individual cells have a search strategy when they are beyond the range of the signal they would otherwise move toward? Here we ask if single, isolated, Dictyostelium and Polysphondylium amoebae bias their motion in the absence of external cues. We placed single well-isolated Dictyostelium and Polysphondylium cells on a nutrient-free agar surface and followed them at 10 sec intervals for ~10 hr, then analyzed their motion with respect to velocity, turning angle, persistence length, and persistence time, comparing the results to the expectation for a variety of different types of random motion. We find that amoeboid behavior is well described by a special kind of random motion: Amoebae show a long persistence time (~10 min) beyond which they start to lose their direction; they move forward in a zig-zag manner; and they make turns every 1-2 min on average. They bias their motion by remembering the last turn and turning away from it. Interpreting the motion as consisting of runs and turns, the duration of a run and the amplitude of a turn are both found to be exponentially distributed. We show that this behavior greatly improves their chances of finding a target relative to performing a random walk. We believe that other eukaryotic cells may employ a strategy similar to Dictyostelium when seeking conditions or signal sources not yet within range of their detection system.Comment: 15 pages, 11 figures, accepted for publication in PLOS On

    Posttranscriptional Regulation of the Human LDL Receptor by the U2-Spliceosome

    Get PDF
    Background: The low-density lipoprotein receptor (LDLR) in the liver is the major determinant of LDL-cholesterol levels in human plasma. The discovery of genes that regulate the activity of LDLR helps to identify pathomechanisms of hypercholesterolemia and novel therapeutic targets against atherosclerotic cardiovascular disease.Methods: We performed a genome-wide RNA interference screen for genes limiting the uptake of fluorescent LDL into Huh-7 hepatocarcinoma cells. Top hit genes were validated by in vitro experiments as well as analyses of datasets on gene expression and variants in human populations.Results: The knockdown of 54 genes significantly inhibited LDL uptake. Fifteen of them encode for components or interactors of the U2-spliceosome. Knocking down any one of 11 out of 15 genes resulted in the selective retention of intron 3 of LDLR. The translated LDLR fragment lacks 88% of the full length LDLR and is detectable neither in non-transfected cells nor in human plasma. The hepatic expression of the intron 3 retention transcript is increased in non-alcoholic fatty liver disease as well as after bariatric surgery. Its expression in blood cells correlates with LDL-cholesterol and age. Single nucleotide polymorphisms and three rare variants of one spliceosome gene, RBM25, are associated with LDL-cholesterol in the population and familial hypercholesterolemia, respectively. Compared to overexpression of wild type RBM25, overexpression of the three rare RBM25 mutants in Huh-7 cells led to lower LDL uptake.Conclusions: We identified a novel mechanism of post-transcriptional regulation of LDLR activity in humans and associations of genetic variants of RBM25 with LDL-cholesterol levels.</p

    Reproducible image handling and analysis

    No full text
    Image data are universal in life sciences research. Their proper handling is not. A significant proportion of image data in research papers show signs of mishandling that undermine their interpretation. We propose that a precise description of the image processing and analysis applied is required to address this problem. A new norm for reporting reproducible image analyses will diminish mishandling, as it will alert co-authors, referees, and journals to aberrant image data processing or, if published nonetheless, it will document it to the reader. To promote this norm, we discuss the effectiveness of this approach and give some step-by-step instructions for publishing reproducible image data processing and analysis workflows.ISSN:0261-4189ISSN:1460-207

    How Modifications of Corneal Cross-Linking Protocols Influence Corneal Resistance to Enzymatic Digestion and Treatment Depth

    No full text
    Purpose: The purpose of this study was to determine the effects of the Photoactivated Chromophore for Keratitis Corneal Cross-Linking (PACK-CXL) protocol modifications on corneal resistance to enzymatic digestion and treatment depth. Methods: Eight hundred one ex vivo porcine eyes were randomly divided into groups of 12 to 86 corneas, treated with various epi-off PACK-CXL modifications, including acceleration (30 > 2 minutes, 5.4 J/cm2), increased fluence (5.4 > 32.4 J/cm2), deuterium oxide (D2O) supplementation, different carrier types (dextran versus hydroxypropyl methylcellulose [HPMC]), increased riboflavin concentration (0.1 > 0.4%), and riboflavin replenishment during irradiation (yes/no). Control group eyes did not receive PACK-CXL. A pepsin digestion assay was used to determine corneal resistance to enzymatic digestion. A phalloidin fluorescent imaging assay was used to determine the PACK-CXL treatment effect depth. Differences between groups were evaluated using a linear model and a derivative method, respectively. Results: PACK-CXL significantly increased corneal resistance to enzymatic digestion compared to no treatment (P < 0.03). When compared to a 10 minute, 5.4 J/cm2 PACK-CXL protocol, fluences of 16.2 J/cm2 and higher increased corneal resistance to enzymatic digestion by 1.5- to 2-fold (P < 0.001). Other protocol modifications did not significantly change corneal resistance. A 16.2 J/cm2 fluence also increased collagen compaction in the anterior stroma, whereas omitting riboflavin replenishment during irradiation increased PACK-CXL treatment depth. Conclusions: Increasing fluence will likely optimize PACK-CXL treatment effectiveness. Treatment acceleration reduces treatment duration without compromising effectiveness. Translational Relevance: The generated data help to optimize clinical PACK-CXL settings and direct future research efforts.ISSN:2164-259

    Harmonic oscillator in heat bath: Exact simulation of time-lapse-recorded data and exact analytical benchmark statistics

    No full text
    The stochastic dynamics of the damped harmonic oscillator in a heat bath is simulated with an algorithm that is exact for time steps of arbitrary size. Exact analytical results are given for correlation functions and power spectra in the form they acquire when computed from experimental time-lapse recordings. Three applications are discussed: (i) Effects of finite sampling-rate and -time, described exactly here, are similar for other stochastic dynamical systems-e.g. motile micro-organisms and their time-lapse recorded trajectories. (ii) The same statistics is satisfied by any experimental system to the extent it is interpreted as a damped harmonic oscillator at finite temperature-such as an AFM cantilever. (iii) Three other models of fundamental interest are limiting cases of the damped harmonic oscillator at finite temperature; it consequently bridges their differences and describes effects of finite sampling rate and sampling time for these models as well. Finally, we give a brief discussion of nondimensionalization.Comment: 12 pages, 8 figure

    The NEUBIAS Gateway: a hub for bioimage analysis methods and materials: Editorial

    No full text
    We introduce the NEUBIAS Gateway, a new platform for publishing materials related to bioimage analysis, an interdisciplinary field bridging computer science and life sciences. This emerging field has been lacking a central place to share the efforts of the growing group of scientists addressing biological questions using image data. The Gateway welcomes a wide range of publication formats including articles, reviews, reports and training materials. We hope the Gateway further supports this important field to grow and helps more biologists and computational scientists learn about and contribute to these efforts.ISSN:2046-140
    corecore