375 research outputs found

    Single-cell transcriptomic analysis of mouse neocortical development

    Get PDF
    The development of the mammalian cerebral cortex depends on careful orchestration of proliferation, maturation, and migration events, ultimately giving rise to a wide variety of neuronal and non-neuronal cell types. To better understand cellular and molecular processes that unfold during late corticogenesis, we perform single-cell RNA-seq on the mouse cerebral cortex at a progenitor driven phase (embryonic day 14.5) and at birth—after neurons from all six cortical layers are born. We identify numerous classes of neurons, progenitors, and glia, their proliferative, migratory, and activation states, and their relatedness within and across age. Using the cell-type-specific expression patterns of genes mutated in neurological and psychiatric diseases, we identify putative disease subtypes that associate with clinical phenotypes. Our study reveals the cellular template of a complex neurodevelopmental process, and provides a window into the cellular origins of brain diseases

    Constructing Hybrid Baryons with Flux Tubes

    Get PDF
    Hybrid baryon states are described in quark potential models as having explicit excitation of the gluon degrees of freedom. Such states are described in a model motivated by the strong coupling limit of Hamiltonian lattice gauge theory, where three flux tubes meeting at a junction play the role of the glue. The adiabatic approximation for the quark motion is used, and the flux tubes and junction are modeled by beads which are attracted to each other and the quarks by a linear potential, and vibrate in various string modes. Quantum numbers and estimates of the energies of the lightest hybrid baryons are provided.Comment: 4 pages, RevTeX. Submitted to Physical Review Letter

    Enhanced nociception in angelman syndrome model mice

    Get PDF
    Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by mutation or deletion of the maternal UBE3A allele. The maternal UBE3A allele is expressed in nearly all neurons of the brain and spinal cord, whereas the paternal UBE3A allele is repressed by an extremely long antisense transcript (UBE3A-ATS). Little is known about expression of UBE3A in the peripheral nervous system, where loss of maternal UBE3A might contribute to AS phenotypes. Here we sought to examine maternal and paternal Ube3a expression in DRGs neurons and to evaluate whether nociceptive responses were affected in AS model mice (global deletion of maternal Ube3a allele; Ube3am+/p+). We found that most large-diameter proprioceptive and mechanosensitive DRG neurons expressed maternal Ube3a and paternal Ube3a-ATS. In contrast, most small-diameter neurons expressed Ube3a biallelically and had low to undetectable levels of Ube3a-ATS. Analysis of single-cell DRG transcriptomes further suggested that Ube3a is expressed monoallelically in myelinated large-diameter neurons and biallelically in unmyelinated small-diameter neurons. Behavioral responses to some noxious thermal and mechanical stimuli were enhanced in male and female AS model mice; however, nociceptive responses were not altered by the conditional deletion of maternal Ube3a in the DRG. These data suggest that the enhanced nociceptive responses in AS model mice are due to loss of maternal Ube3a in the central, but not peripheral, nervous system. Our study provides new insights into sensory processing deficits associated with AS

    Entangling Two Bose-Einstein Condensates by Stimulated Bragg Scattering

    Get PDF
    We propose an experiment for entangling two spatially separated Bose-Einstein condensates by Bragg scattering of light. When Bragg scattering in two condensates is stimulated by a common probe, the resulting quasiparticles in the two condensates get entangled due to quantum communication between the condensates via probe beam. The entanglement is shown to be significant and occurs in both number and quadrature phase variables. We present two methods of detecting the generated entanglement.Comment: 4 pages, Revte

    Local well-posedness for membranes in the light cone gauge

    Full text link
    In this paper we consider the classical initial value problem for the bosonic membrane in light cone gauge. A Hamiltonian reduction gives a system with one constraint, the area preserving constraint. The Hamiltonian evolution equations corresponding to this system, however, fail to be hyperbolic. Making use of the area preserving constraint, an equivalent system of evolution equations is found, which is hyperbolic and has a well-posed initial value problem. We are thus able to solve the initial value problem for the Hamiltonian evolution equations by means of this equivalent system. We furthermore obtain a blowup criterion for the membrane evolution equations, and show, making use of the constraint, that one may achieve improved regularity estimates.Comment: 29 page

    Magnetic Catalysis: A Review

    Full text link
    We give an overview of the magnetic catalysis phenomenon. In the framework of quantum field theory, magnetic catalysis is broadly defined as an enhancement of dynamical symmetry breaking by an external magnetic field. We start from a brief discussion of spontaneous symmetry breaking and the role of a magnetic field in its a dynamics. This is followed by a detailed presentation of the essential features of the phenomenon. In particular, we emphasize that the dimensional reduction plays a profound role in the pairing dynamics in a magnetic field. Using the general nature of underlying physics and its robustness with respect to interaction types and model content, we argue that magnetic catalysis is a universal and model-independent phenomenon. In support of this claim, we show how magnetic catalysis is realized in various models with short-range and long-range interactions. We argue that the general nature of the phenomenon implies a wide range of potential applications: from certain types of solid state systems to models in cosmology, particle and nuclear physics. We finish the review with general remarks about magnetic catalysis and an outlook for future research.Comment: 37 pages, to appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee. Version 2: references adde

    On Higher Order Gravities, Their Analogy to GR, and Dimensional Dependent Version of Duff's Trace Anomaly Relation

    Full text link
    An almost brief, though lengthy, review introduction about the long history of higher order gravities and their applications, as employed in the literature, is provided. We review the analogous procedure between higher order gravities and GR, as described in our previous works, in order to highlight its important achievements. Amongst which are presentation of an easy classification of higher order Lagrangians and its employment as a \emph{criteria} in order to distinguish correct metric theories of gravity. For example, it does not permit the inclusion of only one of the second order Lagrangians in \emph{isolation}. But, it does allow the inclusion of the cosmological term. We also discuss on the compatibility of our procedure and the Mach idea. We derive a dimensional dependent version of Duff's trace anomaly relation, which in \emph{four}-dimension is the same as the usual Duff relation. The Lanczos Lagrangian satisfies this new constraint in \emph{any} dimension. The square of the Weyl tensor identically satisfies it independent of dimension, however, this Lagrangian satisfies the previous relation only in three and four dimensions.Comment: 30 pages, added reference

    Incorporating image quality in multi-algorithm fingerprint verification

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/11608288_29Proceedings of International Conference, ICB 2006, Hong Kong (China)The effect of image quality on the performance of fingerprint verification is studied. In particular, we investigate the performance of two fingerprint matchers based on minutiae and ridge information as well as their score-level combination under varying fingerprint image quality. The ridge-based system is found to be more robust to image quality degradation than the minutiae-based system. We exploit this fact by introducing an adaptive score fusion scheme based on automatic quality estimation in the spatial frequency domain. The proposed scheme leads to enhanced performance over a wide range of fingerprint image quality.This work has been supported by Spanish MCYT TIC2003-08382-C05-01 and by European Commission IST-2002-507634 Biosecure NoE projects
    • …
    corecore