5,945 research outputs found

    Overlapping memory replay during sleep builds cognitive schemata

    Get PDF
    Sleep enhances integration across multiple stimuli, abstraction of general rules, insight into hidden solutions and false memory formation. Newly learned information is better assimilated if compatible with an existing cognitive framework or schema. This article proposes a mechanism by which the reactivation of newly learned memories during sleep could actively underpin both schema formation and the addition of new knowledge to existing schemata. Under this model, the overlapping replay of related memories selectively strengthens shared elements. Repeated reactivation of memories in different combinations progressively builds schematic representations of the relationships between stimuli. We argue that this selective strengthening forms the basis of cognitive abstraction, and explain how it facilitates insight and false memory formation

    Time and Frequency Transfer in a Coherent Multistatic Radar using a White Rabbit Network

    Get PDF
    Networks of coherent multistatic radars require accurate and stable time and frequency transfer (TFT) for range and Doppler estimation. TFT techniques based on global navigation satellite systems (GNSS), have been favoured for several reasons, such as enabling node mobility through wireless operation, geospatial referencing, and atomic clock level time and frequency stability. However, such systems are liable to GNSS-denial, where the GNSS carrier is temporarily or permanently removed. A denial-resilient system should consider alternative TFT techniques, such as the White Rabbit (WR) project. WR is an Ethernet based protocol, that is able to synchronise thousands of nodes on a fibre-optic based network with sub-nanosecond accuracy and picoseconds of jitter. This thesis evaluates WR as the TFT network for a coherent multistatic pulse-Doppler radar – NeXtRAD. To test the hypothesis that WR is suitable for TFT in a coherent multistatic radar, the time and frequency performance of a WR network was evaluated under laboratory conditions, comparing the results against a network of multi-channel GPS-disciplined oscillators (GPSDO). A WR-disciplined oscillator (WRDO) is introduced, which has the short-term stability of an ovenised crystal (OCXO), and long-term stability of the WR network. The radar references were measured using a dual mixer time difference technique (DMTD), which allows the phase to be measured with femtosecond level resolution. All references achieved the stringent time and frequency requirements for short-term coherent bistatic operation, however the GPSDOs and WRDOs had the best short-term frequency stability. The GPSDOs had the highest amount of long-term phase drift, with a peak-peak time error of 9.6 ns, whilst the WRDOs were typically stable to within 0.4 ns, but encountered transient phase excursions to 1.5 ns. The TFT networks were then used on the NeXtRAD radar, where a lighthouse, Roman Rock, was used as a static target to evaluate the time and frequency performance of the references on a real system. The results conform well to the laboratory measurements, and therefore, WR can be used for TFT in coherent radar

    A perspective on the ultrafast photochemistry of solution-phase sunscreen molecules

    Get PDF
    Sunscreens are one of the most common ways of providing on-demand additional photoprotection to the skin. Ultrafast transient absorption spectroscopy has recently proven to be an invaluable tool in understanding how the components of commercial sunscreen products display efficient photoprotection. Important examples of how this technique has unravelled the photodynamics of common components are given in this Perspective, and some of the remaining unanswered questions are discussed

    Further investigations into the single metal deposition (SMD II) technique for the detection of latent fingermarks

    Get PDF
    Single metal deposition (SMD II), a recently proposed method for the development of latent fingermarks, was investigated by systematically altering aspects of the procedure to assess their effect on the level of development and contrast achieved. Gold nanoparticle size, temperature of the deposition solution bath, and orbital shaking during detection were shown to affect the levels of development and contrast obtained. Gold nanoparticles of diameter 15–21 nm were found to be most effective for satisfactory visualisation of latent fingermarks, while solutions that were applied at room temperature were found to adequately balance the ratio between the contrast of the fingermark ridge detail and the level of background staining achieved. Finally, optimum levels of development and contrast were obtained through constant agitation of both solution baths at approximately 50 RPM throughout the submersion time. SMD II was also tested on a large variety of substrate types and shown to be effective on a range of porous, non-porous, and semi-porous surfaces; however, the detection quality can be significantly influenced by the substrate nature. This resulted in the production of dark grey, white, or gold coloured fingermarks on different surfaces, as well as reversed detection on certain types of plastic, similarly seen through the use of vacuum metal deposition. © 2016 Elsevier Ireland Lt

    Schema-conformant memories are preferentially consolidated during REM sleep

    Get PDF
    Memory consolidation is most commonly described by the standard model, which proposes an initial binding role for the hippocampus which diminishes over time as intracortical connections are strengthened. Recent evidence suggests that slow wave sleep (SWS) plays an essential role in this process. Existing animal and human studies have suggested that memories which fit tightly into an existing knowledge framework or schema might use an alternative consolidation route in which the medial prefrontal cortex takes on the binding role. In this study we sought to investigate the role of sleep in this process using a novel melodic memory task. Participants were asked to remember 32 melodies, half of which conformed to a tonal schema present in all enculturated listeners, and half of which did not fit with this schema. After a 24-h consolidation interval, participants were asked to remember a further 32 melodies, before being given a recognition test in which melodies from both sessions were presented alongside some previously unheard foils. Participants remembered schema-conformant melodies better than non-conformant ones. This was much more strongly the case for consolidated melodies, suggesting that consolidation over a 24-h period preferentially consolidated schema-conformant items. Overnight sleep was monitored between the sessions, and the extent of the consolidation benefit for schema-conformant items was associated with both the amount of REM sleep obtained and EEG theta power in frontal and central regions during REM sleep. Overall our data suggest that REM sleep plays a crucial role in the rapid consolidation of schema-conformant items. This finding is consistent with previous results from animal studies and the SLIMM model of Van Kesteren, Ruiter, Fernández, and Henson (2012), and suggest that REM sleep, rather than SWS, may be involved in an alternative pathway of consolidation for schema-conformant memories. Copyright © 2015. Published by Elsevier Inc

    Changes in structural network topology correlate with severity of hallucinatory behavior in Parkinson's disease

    Get PDF
    Inefficient integration between bottom-up visual input and higher order visual processing regions is implicated in visual hallucinations in Parkinson's disease (PD). Here, we investigated white matter contributions to this perceptual imbalance hypothesis. Twenty-nine PD patients were assessed for hallucinatory behavior. Hallucination severity was correlated to connectivity strength of the network using the network-based statistic approach. The results showed that hallucination severity was associated with reduced connectivity within a subnetwork that included the majority of the diverse club. This network showed overall greater between-module scores compared with nodes not associated with hallucination severity. Reduced between-module connectivity in the lateral occipital cortex, insula, and pars orbitalis and decreased within-module connectivity in the prefrontal, somatosensory, and primary visual cortices were associated with hallucination severity. Conversely, hallucination severity was associated with increased between- and within-module connectivity in the orbitofrontal and temporal cortex, as well as regions comprising the dorsal attentional and default mode network. These results suggest that hallucination severity is associated with marked alterations in structural network topology with changes in participation along the perceptual hierarchy. This may result in the inefficient transfer of information that gives rise to hallucinations in PD. Author SummaryInefficient integration of information between external stimuli and internal perceptual predictions may lead to misperceptions or visual hallucinations in Parkinson's disease (PD). In this study, we show that hallucinatory behavior in PD patients is associated with marked alterations in structural network topology. Severity of hallucinatory behavior was associated with decreased connectivity in a large subnetwork that included the majority of the diverse club, nodes with a high number of between-module connections. Furthermore, changes in between-module connectivity were found across brain regions involved in visual processing, top-down prediction centers, and endogenous attention, including the occipital, orbitofrontal, and posterior cingulate cortex. Together, these findings suggest that impaired integration across different sides across different perceptual processing regions may result in inefficient transfer of information

    Taphonomic and technological analyses of Lower Palaeolithic bone tools from Clacton-on-Sea, UK

    Get PDF
    The exceptional survival of Middle Pleistocene wooden spears at Schöningen (Germany) and Clacton-on-Sea (UK) provides tantalizing evidence for the widespread use of organic raw materials by early humans. At Clacton, less well-known organic artefacts include modified bones that were identified by the Abbé Henri Breuil in the 1920s. Some of these pieces were described and figured by Hazzledine Warren in his classic 1951 paper on the flint industry from the Clacton Channel, but they have been either overlooked in subsequent studies or dismissed as the product of natural damage. We provide the first detailed analysis of two Clactonian bone tools found by Warren and a previously unrecognized example recovered in 1934 during excavations directed by Mary Leakey. Microscopic examination of percussion damage suggests the bones were used as knapping hammers to shape or resharpen flake tools. Early Palaeolithic bone tools are exceedingly rare, and the Clacton examples are the earliest known organic knapping hammers associated with a core-and-flake (Mode 1) lithic technology. The use of soft hammers for knapping challenges the consensus that Clactonian flintknapping was undertaken solely with hard hammerstones, thus removing a major technological and behavioural difference used to distinguish the Clactonian from late Acheulean handaxe (Mode 2) industries
    corecore