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Abstract 

Single metal deposition (SMD II), a recently proposed method for the development of latent 

fingermarks, was investigated by systematically altering aspects of the procedure to assess their 

effect on the level of development and contrast achieved. Gold nanoparticle size, temperature of 

the deposition solution bath, and orbital shaking during detection were shown to affect the levels of 

development and contrast obtained. Gold nanoparticles of diameter 15-21 nm were found to be 

most effective for satisfactory visualisation of latent fingermarks, while solutions that were applied 

at room temperature were found to adequately balance the ratio between the contrast of the 

fingermark ridge detail and the level of background staining achieved. Finally, optimum levels of 

development and contrast were obtained through constant agitation of both solution baths at 

approximately 50 RPM throughout the submersion time. SMD II was also tested on a large variety of 

substrate types and shown to be effective on a range of porous, non-porous, and semi-porous 

surfaces; however, the detection quality can be significantly influenced by the substrate nature. This 

resulted in the production of dark grey, white, or gold coloured fingermarks on different surfaces, as 

well as reversed detection on certain types of plastic, similarly seen through the use of vacuum 

metal deposition. 
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1. Introduction 

Interest in nanoparticles for fingermark detection has gained a lot of momentum since early 

2000 due to the many potentially beneficial properties they exhibit (1-3). Nanoparticles are 

extremely small in diameter, generally 1000 – 10 000 times smaller than a fingermark ridge 

width, ensuring excellent resolution upon detection (1, 4). The properties of nanoparticles 

can be modified easily by the addition of molecular chains or chemical functionalities on 

their outer surface (5-7), ensuring the specific targeting of fingermark components (1, 4, 8). 

They can also exhibit various optical properties due to the presence of surface plasmons, 

and allow for the possibility of luminescence depending on the type of nanoparticle (1, 4, 8-

10). This can effectively increase the sensitivity of detection techniques based on such 

materials (8, 11).  

Single metal deposition (SMD II) is considered the latest improvement of the original 

multimetal deposition (MMD) technique, and uses gold for both the deposition and 

enhancement stages (12-16). This development technique involves the deposition of citrate-

reduced gold nanoparticles onto fingermark ridges in a colloidal gold solution bath, and then 

reduction of additional gold in a reinforcement solution bath for further contrast 

enhancement (Figure 1) (13-16). 

 

Figure 1: The development process of single metal deposition performed on latent fingermark 

residue, involving a deposition step followed by a reduction step, adapted from Bécue, 2010 (17). 

The colloidal gold deposition bath also contains a citric acid buffer, Tween 20 (surfactant) to 

prevent nanoparticle aggregation, and a small amount of L-aspartic acid, which is expected 

to replace a minor portion of the gold nanoparticle surface functionalisation to allow for 

efficacy of the method across a much wider pH range (12, 16).  

This evolution of the technique was proven to be more efficient and robust than previous 

ones, allowing development of a larger number of samples in one solution bath with 

significantly less impact on the quality of the mark, and detecting 50 % more fingermarks 

(16). There is no need to monitor the pH of the working solutions as with other methods, 

and the synthetic protocol has been optimised to generate 2.5 L of solution, making it 

extremely suited to operational use (16). SMD II is believed to work on most surface types, 



including adhesives, cartridge cases, and even wetted items, for latent fingermarks up to – 

and possibly older than – 2 years old (13, 16). 

The standardisation and validation of newly proposed fingermark detection methods is 

extremely important for strengthening fingermark research and improving operational 

detection capabilities, therefore, the overall purpose of this study was to investigate the 

novel SMD II method for latent fingermark detection with respect to the International 

Fingerprint Research Group (IFRG) Guidelines (18). The environmental conditions in which a 

fingermark development procedure is performed can have a significant impact on its 

efficacy, such as in the case of 1,2-indanedione. Prolonged heating in low humidity 

conditions can result in the formation of non-fluorescent oligomeric by-products, while 

exposure to high humidity during the development or subsequent storage of samples can 

result in the degradation of Joullié’s Pink back to 1,2-indanedione or a hydrindantin 

derivative  (19-21).  

As it can be seen from the literature, most of the MMD/SMD optimisation studies were 

performed in Switzerland, the climate of which can be described as moderate, with no 

excessive heat, cold, or humidity (18, 22, 23). Climatic conditions in Western Australia vary 

from those of Switzerland in terms of both average temperature and humidity, with the 

south-west region in particular experiencing hot, dry summers and mild, wet winters (24, 

25). For this reason, the procedure was firstly tested for its reliability and robustness under 

Western Australian conditions, and on a range of different substrates. The protocol was also 

subjected to systematic experimentation with several different parameters in accordance 

with Phase 2 of the IRFG Guidelines – ‘Optimisation & Comparison’ (18). This can provide 

knowledge as to which conditions are crucial for successful detection of latent fingermarks 

using a particular method, and assist forensic investigators in achieving optimum levels of 

development. The main areas of interest to be examined were the effect of nanoparticle 

size, temperature, and agitation of the solution baths.  

2. Materials and Methods 

Tetrachloroauric acid trihydrate, trisodium citrate dihydrate, sodium hydroxide, L-aspartic 

acid, Tween 20, citric acid monohydrate, and hydroxylamine hydrochloride were all sourced 

from Sigma-Aldrich, USA. Reagents were of analytical grade and used as received, and water 

utilised was deionised unless otherwise stated. 

2.1 Fingermark samples 

Latent fingermarks were collected from five donors (three male and two female, all aged 

between 20-29 years) for each trial over the duration of the testing period. For each 

substrate considered in this study, the donors were asked to lightly touch the middle three 

fingers of each hand to leave ‘uncharged’ or natural fingermark samples. They then rubbed 

the fingers of both hands over their faces and chests to ‘charge’ their fingers with sebum 



before repeating the above deposition process. For substrate testing there were 23 

substrates and 30 marks per substrate (3 charged and 3 uncharged marks from 5 donors) 

giving a total of 690 marks. For the studies into nanoparticle size, effect of temperature, and 

shaking  there were 72 marks for each of the 3 studies (6 charged and 6 uncharged marks 

from 5 donors) giving a total of 180 marks.  Each donor was allocated an anonymous 

alphanumeric code for recording purposes. Fingermarks were then stored in paper 

envelopes and placed in an office cupboard at room temperature for 1-2 weeks before 

treatment, unless otherwise stated. For comparison studies, all samples were cut in half 

down the middle finger immediately prior to their development to provide two alike 

samples. This ‘split-mark’ approach has been recommended by the IFRG, and in articles 

dealing with fingermark deposition protocols for detection purposes (18, 26, 27). 

2.2 Colloidal gold solution synthesis 

The stock solutions for SMD II were prepared according to the method published by Moret 

and Bécue (16). Their contents were as follows: 

Table 1: Stock solutions prepared for the SMD II development procedure. 

Solution A 0.500 g tetrachloroauric acid trihydrate dissolved in 5 mL Milli-Q water 

Solution B 1.70 g trisodium citrate dihydrate dissolved in 85 mL Milli-Q water 

Solution C 
0.120 g sodium hydroxide and 0.380 g L-aspartic acid dissolved in 25 mL 

Milli-Q water 

Solution D 31.5 g citric acid monohydrate dissolved in 150 mL Milli-Q water 

Solution E 1.00 g hydroxylamine hydrochloride dissolved in 50 mL Milli-Q water 

Solution A was stored in a sample vial in a refrigerator at 4 °C to prolong its shelf-life, while 

solutions B-E were stored at room temperature in glass bottles in a cupboard away from 

light. 

Colloidal gold was prepared as follows (17): solution A (1 mL) was added to deionised (DI) 

water (460 mL) and heated to boiling point under constant stirring (solution 1). In a separate 

beaker, solution B (42 mL) was combined with solution C (420 μL). When solution 1 reached 

its boiling point, the content of the beaker was quickly poured in. The solution continued to 

be heated under constant stirring until it turned a deep red colour, at which point it was 

diluted with DI water to reach a final volume of 2.5 L. Tween 20 (2.5 mL) was then added 

under stirring. The solution was stored in a polypropylene container in a refrigerator at 4 °C. 

For every application of SMD II, a red-coloured gold nanoparticle stock solution synthesised 

according to this method was used, unless otherwise stated.   



Several versions of gold nanoparticle stock solution were synthesised that contained gold 

nanoparticles of different diameters, labelled stock #1 (original), and stocks #2 to #4 

(derivatives). This was carried out by following the method outlined above, but altering the 

length of the boiling time of solution 1 prior to adding the reducing agents: under 1 minute 

of boiling time (stock #2), 5 or more minutes of boiling time (stock #3), and 1-2 minutes of 

boiling time (stock #4). The nanoparticle diameters within all these solutions were later 

measured using dynamic light scattering (DLS).  

2.3 Nanoparticle characterisation 

All gold nanoparticle stock solutions were analysed in 1 cm optical path cells and 

characterised using an Agilent Cary Series 4000 UV-Vis spectrophotometer across 

wavelengths of 400-800 nm. DI water was used as a blank reference sample. Data 

acquisition and processing was performed using Cary WinUV software (version 4.20).  

DLS size analysis of all gold stock solutions was performed using the same standard 

operating procedure set at 20 °C, with the original stock solution #1 also being analysed at 

temperatures ranging from 10-30 °C. The measurements were performed using a Malvern 

Zetasizer Nano ZS (model ZEN3600) with a 1 cm optical path cell. A minimum 10 scans were 

performed per sample before producing a value. Malvern Zetasizer Nano software (version 

7.11) was utilised for data acquisition.  

2.4 Fingermark detection  

The detection of fingermarks was conducted as follows (17): gold nanoparticle stock 

solution (200 mL) was removed from the refrigerator and left to warm up to room 

temperature in a glass dish. 6 mL of solution D were then added under constant stirring to 

lower the pH of the solution (3 mL for every 100 mL of stock solution). Fingermark samples 

were submersed in DI water for 2-3 minutes before being submersed in the gold 

nanoparticle solution bath for 20 minutes under constant orbital shaking on a PathTech 

Basic Orbital Mixer at approximately 50 RPM (Figure 2). Samples were then rinsed in DI 

water for 2-3 minutes. In another glass dish, solution A (200 μL) and solution E (200 μL) were 

added to DI water (200 mL) under intense stirring to form a reduction bath. Samples were 

then submersed in this reduction bath for 20 minutes under constant orbital shaking at 

approximately 50 RPM. They were then rinsed in DI water again for 2-3 minutes before 

being left to dry on paper towels at room temperature. 

 



Figure 2: The solution baths required for latent fingermark development using SMD II, adapted from 

Moret and Bécue, 2015 (16). 

To investigate the effect of nanoparticle size on the development of latent fingermarks, 

several gold stock solutions that contained nanoparticles of different diameters (stocks #1 

to #4) were applied to fingermarks using the SMD II procedure. Overlooking the size of the 

gold nanoparticles, these solutions were similar to the original gold nanoparticle stock 

solution, and were applied in the same way to split-mark samples (stock solution #1 vs #2, 

and #3 vs #4). 

The effect of the temperature of the gold nanoparticle solution bath on the development of 

latent fingermarks was investigated through the application of portions of the best-suited 

gold stock solution to fingermark samples at different temperatures; straight from the 

refrigerator at 4 °C, at a room temperature of 20 °C (RT), and heated to 30 °C immediately 

prior to the submersion of samples. These solutions were similar to each other in 

composition and appearance and, except for their temperature, were applied in the same 

way to split-mark samples (RT vs 4 °C, and RT vs 30 °C).  

To investigate how agitation of the solution baths affects the development of latent 

fingermarks using SMD II, the method was carried out several times with the solution baths 

under different levels of agitation; constant agitation of both active solution baths for the 

entire submersion time, minimal agitation (30 second shake at the beginning, middle, and 

end of the submersion time for each bath), and no agitation at all. Trials were also done 

where only the gold nanoparticle solution bath was under constant agitation for the entire 

submersion time, while the reduction bath experienced no agitation at all. The agitation was 

kept steady throughout the procedure by using a PathTech Basic Orbital Mixer set at 

approximately 50 RPM. These nanoparticle solutions were all taken from one batch of the 

original gold nanoparticle stock solution (#4) and were therefore identical to each other. 

Excluding the level of agitation, these solutions were applied in exactly the same way to split 

mark samples (no agitation vs minimal agitation vs full agitation, and full procedure 

agitation vs only colloidal gold agitation). 

2.5 Substrates 

In order to assess the efficacy of the SMD II procedure on different surfaces, latent 

fingermarks were collected on 23 different substrates, as listed in Table 2. 

  



Table 2: List of the substrates considered in this study. 

Substrate Type Manufacturer/Product 

Recycled white copy paper Porous OfficeMax® 50% recycled paper 

Calcium carbonate-chalk / 

polyethylene blend paper 

Porous 
Nu World® Stone Paper 

Transparent polypropylene 

document sleeve 

Non-porous 
Marbig® 

White copy paper 
Porous Fuji Xerox® Business Digital Carbon 

Neutral 

Glass microscope slide 
Non-porous Mikro® optical quality microscope 

slides 

Aluminium foil (matte side) Non-porous Confoil® heavy duty 

Aluminium can Non-porous Coke Zero® 

Polycarbonate Compact Disk 

(recording side) 

Non-porous 
Lite-On® 

Polyethylene bottle Non-porous Kartell® 500 mL laboratory bottle 

Polyethylene terephthalate bottle Non-porous Cool Ridge® 600 mL water bottle 

Polypropylene takeaway container Non-porous Unknown Manufacturer 

Polymethyl methacrylate white car 

paint sample 

Non-porous 
Paint taken from a Holden VF GTS 

White Post-It note Porous Post It® 

Thick cardboard Porous Curtin University document wallet 

Ruled graph paper Porous Gormack Graph Papers® 

Glossy white paper 

Semi-porous International Association for 

Identification’s “IDentification 

News” newsletter 

Smooth white paper 

Porous American Academy of Forensic 

Sciences’ “Academy News” 

newsletter 

Lined thin white paper Porous Olympic® exercise book 

Lined thick white paper Porous Spank Publishing® notebook 

White matte photo paper  Semi-porous HP® Photo Laser Paper 200 matte 

Black cardboard Porous Optix® Jetz Black 

Green copy paper Porous Optix® Veni Green 

Patterned wrapping paper Porous Unknown manufacturer 

All plastic substrates were characterised through attenuated total reflectance infrared (ATR-

IR) analysis on a Thermo Scientific Nicolet iS50 Fourier transform infrared (FT-IR) 

spectrometer (see Supplementary Material Figures A1-6). The Nu World® Stone Paper was 

selected as the substrate for the majority of experimentation within this research, unless 

otherwise stated.  

  



2.6 Recording and evaluation of results 

Samples were photographed using a Nikon D300 camera, equipped with a 28 mm AF-S 

Micro-Nikon lens, mounted overhead on a Firenze Mini Repro stand and acquired on a 

computer using Nikon Camera Control Pro version 2.0.0. Samples photographed in 

reflectance mode were illuminated using dual incandescent light globes mounted on either 

side of the camera. Photographed samples were then stored in paper envelopes in a 

laboratory cupboard at room temperature. All images were later adjusted for brightness 

and contrast using Adobe Photoshop CS6 version 13.0, with any adjustments applied equally 

to all equivalent sample photographs. 

All treated fingermarks were graded by a single evaluator based on the quality of friction 

ridge detail developed, and the contrast between the fingermark ridges and background of 

the sample. A 5-point system developed by the UK Home Office Centre for Applied Science 

and Technology (CAST) was used, as per Table 3 (28).  

Table 3: UK Home Office grading system used to classify developed fingermarks (28). 

Grade    Level of Development 

0 No development 

1 Signs of contact but less than 1/3 of continuous ridges, poor contrast 

2 1/3 –  2/3 of continuous ridges, adequate contrast 

3 More than 2/3 of continuous ridges but not quite a ‘perfect’ fingermark, good contrast 

4 Full development; whole fingermark, continuous ridges, excellent contrast 

These allocated grades should be considered as nonparametric class identities rather than 

continuous values. For this reason, the most frequently occurring fingermark grade (mode) 

was calculated for each trial and used as a means of comparison between samples. When 

trials resulted in equivalent modes, the central fingermark grade obtained (median) was 

also provided for a more detailed indication of the distribution of the grades (29).  

3. Results and Discussion 

3.1 Colloidal gold nanoparticle synthesis and characterisation 

When synthesising gold nanoparticles for the SMD II stock solution according to the method 

published, it was found that the length of the boiling time of the gold salt in water had a 

significant effect on the size of the nanoparticles being produced, and therefore the colour 

of the solution. If the reducing agents were added  immediately upon boiling (stock #2), 

nanoparticles with a larger diameter than intended were produced, resulting in a dark 



purple coloured solution (Figure 3). If the reducing agents were added after a minute or two 

of boiling (original stock #1 and #4), nanoparticles of the intended size were produced, 

resulting in the desired red solution. If the reducing agents were added after approximately 

5 or more minutes of boiling (stock #3), nanoparticles of a much smaller diameter were 

produced, resulting in a grey coloured solution.  

 

Figure 3: SMD II gold nanoparticle stock solutions #2 (left), #1 (middle), and #3 (right) containing 

different sized nanoparticles, with the length of the boiling time increased in samples from left to 

right. 

The nanoparticle diameters were measured for the four different colloidal gold stock 

solutions using DLS after their dilution and the addition of Tween 20, with the results 

outlined in Table 4. 

Table 4: Characterization of the different colloidal gold solutions in terms of colour and diameter size 

(measured by dynamic light scattering). 

Gold Nanoparticle 

Stock Solution 

Colour of Solution Nanoparticle Diameter  

Stock #3 Grey 6 nm 

Stock #4 Red 17 nm 

Stock #1 – 

"Reference" 

Red 21 nm 

Stock #2 Dark purple 34 nm 

The reference solution (21 nm) that was synthesised by following the published method 

resulted in nanoparticles with a slightly larger diameter than those obtained by Bécue et al. 

(17 nm) (12, 16). For this reason stock solution #4 (17 nm) was utilised for all subsequent 

investigations. Exact boiling times utilised to produce these individual solutions could not be 

determined, as it was a varying parameter based on conditions such as the initial 



temperature of the solutions and the quantity of solution being heated. Each individual gold 

nanoparticle stock solution was characterised by UV-visible spectroscopy (Figure 4).  

 

Figure 4: Absorbance spectra of the different colloidal gold solutions. 

As the size of the gold nanoparticles increased, the absorbance peaks were broadened due 

to the increased scattering of light and variation in surface plasmon resonance (30-33). For 

nanoparticle diameters above 30 nm, another smaller, broader peak started to appear at 

longer wavelengths resulting in two absorbance maxima, caused by the presence of both 

transversal and longitudinal surface plasmon resonances (32, 33). The purple appearance of 

the solutions was produced by the additional absorption at these longer wavelengths of 

light. Gold nanoparticle solutions consisting of smaller diameter nanoparticles, such as stock 

#3 (containing 6 nm particles), can sometimes be too small to exhibit surface plasmon 

resonance, therefore resulting in no apparent absorbance of visible light (33). The spectrum 

produced by this solution above appeared to have negative values for its absorbance, which 

can most likely be attributed to an error in the background correction. 

3.2 SMD II assessment guidelines 

Guidelines for the assessment of fingermark detection techniques have been proposed by 

the IFRG that outline methods for the development and evaluation of new fingermark 

treatments (18). To ensure assessment of the naturally occurring variation in fingermark 

composition, these guidelines state that pilot studies of novel fingermark treatments should 

entail the use of samples from at least 3 donors (18). While previous publications have 

focussed on an actual assessment of the efficiency of the SMD and MMD development 

techniques, the emphasis of this study was put on the effect of the different parameters on 
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the detection quality of the published SMD II protocol. For this reason, the required number 

of donors was consequently less important than in a sensitivity or efficiency study. 

There will always be a degree of variability throughout samples; although conditions have 

been kept as constant as possible throughout the experiments. All donors gave samples 

under similar conditions within 24 hours of each other, all samples were stored in similar 

environmental conditions (unless otherwise stated), and the same donors were used in each 

trial to allow for direct comparison. As it is unlikely that fingermarks at a crime scene will be 

processed while still fresh, fingermark samples were stored for at least 1 week prior to 

treatment, unless stated otherwise. Furthermore, both natural fingermarks as well as 

fingermarks ‘charged’ with sebaceous material from the face were used throughout this 

research. This was done in order to replicate the use of the fingermark treatment under 

operational conditions, while also obtaining some form of consistency throughout samples. 

3.2 Effect of the nanoparticle size 

Gold nanoparticle stock solutions containing different sized nanoparticles were applied to 

latent fingermarks using the SMD II procedure, and resulted in varying levels of 

development and contrast, as evident in Figure 5.  

 

Figure 5: Latent fingermarks developed on Nu World Stone Paper using SMD II with solutions 

containing gold nanoparticles of diameter (a) 6 nm, (b) 17 nm, (c) 21 nm, (d) 34 nm. 

The application of 6 nm gold nanoparticles resulted in low levels of fingermark development 

and minimal contrast achieved, with fingermarks most frequently being graded at 1. 

Increasing the nanoparticle diameter to 17 nm resulted in elevated levels of fingermark 

development with high contrast attained against the surface, causing a fingermark grade of 

3 to be produced by the majority of samples. Similar results were obtained through the use 

of 21 nm gold nanoparticles, achieving comparable levels of development with only slightly 

reduced contrast of the fingermark, maintaining the mode of 3. When the nanoparticle 

diameter was increased further to 34 nm, there was a significant reduction in the level of 

contrast achieved, as well as a slight deterioration in the degree of development. These 



samples most frequently produced a fingermark grade of 2. The level of development and 

contrast obtained through the use of SMD II is heavily dependent on both the deposition of 

the gold nanoparticles onto the fingermark residue, as well as the reduction of gold salt 

induced by the already deposited nanoparticles. Smaller nanoparticles, such as those at 

6 nm, may be too small to seed satisfactory reduction of the gold salt in the reinforcement 

bath, resulting in what appears to be hindered levels of detection of the fingermark residue. 

On the opposite end of the spectrum, larger nanoparticles tend to be less surface-active 

than smaller particles due to the decreased surface area-volume ratio (34). Due to the 

reduction in surface activity of these larger nanoparticles, such as those at 34 nm, the 

strength of their interactions with the fingermark residue may be minimised, resulting in 

smaller amounts of gold nanoparticles being deposited onto the ridge detail. This conclusion 

is consistent with the previous observations made by Schnetz and Margot that nanoparticles 

of diameters larger than 20 nm result in inhibited deposition of gold onto the fingermark 

when applied within the MMD procedure (35). It is evident from these results that gold 

nanoparticles of approximate diameter 15-21 nm are optimal for producing high levels of 

latent fingermark development and contrast, and these nanoparticle sizes are obtained 

through the synthesis of colloidal gold solutions that appear red. By definition of the UK 

Home Office fingermark grading system, the two stock solutions containing nanoparticles 

within this range and therefore exhibiting the desired red colour were the only samples to 

achieve grades indicating fingermarks that could be used operationally as a means of 

identification.  

3.3 Effect of the solution temperature 

Altering the temperature of the SMD II gold nanoparticle stock solution #4 (17 nm) before 

the addition of citric acid and the application to latent fingermarks resulted in varying levels 

of development and contrast, as evident in Figure 6.  

 

Figure 6: Latent fingermarks developed on Fuji Xerox white copy paper using SMD II with the gold 

nanoparticle solution bath at (a) 4 °C, (b) 20 °C, (c) 30 °C. 



Gold nanoparticle stock solutions that were applied at 4 °C, immediately after removal from 

the refrigerator, resulted in a heavy degree of background staining. This made it difficult to 

observe the developed fingermarks on the surface, with the majority of these samples 

resulting in a grade of 0. By allowing the solution to warm up to room temperature before 

application, as recommended in the proposed SMD II method, the level of background 

staining is decreased enough to allow visualisation of the fingermark on the substrate, with 

most samples giving an increased grade of 1. Stock solutions heated to 30 °C resulted in a 

significant reduction in background staining, but also experienced a large decrease in the 

contrast of the fingermark ridge detail, again making it difficult to visualise on the substrate. 

The majority of heated samples obtained a grade of 1, although the median was only 0.5 in 

comparison to a median of 1 for room temperature solution samples. From this data it is 

evident that room temperature solutions improved the ratio between the level of 

background staining and the contrast achieved to allow for the best possible visualisation of 

latent fingermarks. While these results contrast the observations made by Schnetz and 

Margot in regards to the effect that temperature has on the MMD development process, 

their conclusions once again support that room temperature solutions allow for 

optimisation of the procedure (35). When analysing the gold nanoparticles using DLS, trials 

were done at different temperatures to see if this had any notable effect on the size of the 

nanoparticles in solution. Heating the gold nanoparticles over 25 °C before analysis caused 

an apparent doubling in the nanoparticle diameter, indicating that aggregation takes place 

at these higher temperatures. Aggregation of the gold nanoparticles affects their ability to 

deposit onto the fingermark residue, resulting in inhibited development of latent 

fingermarks using SMD II. 

3.4 Effect of the bath agitation 

The degree of agitation imposed on both the gold nanoparticle solution bath (based on 

stock #4) and the reduction solution bath significantly affects the level of latent fingermark 

development and contrast achieved, as seen in Figure 7.  

  



 

Figure7: Latent fingermarks developed on Nu World Stone Paper using SMD II with both active 

solution baths under (a) constant agitation, (b) minimal agitation, (c) no agitation. 

No agitation of the solution baths resulted in very low levels of development and contrast, 

with the majority of fingermark samples achieving a grade of 0. Minimal agitation of both 

solution baths throughout the fingermark submersion time resulted in higher levels of 

development, but produced very patchy distribution of contrast. This could be due to the 

overlapping of samples in the solutions, but it could also be hypothesised that it is caused by 

the lack of a constant gold supply to certain areas of the sample; gold that is deposited onto 

the fingermark is not replenished in areas without mixing, prohibiting a constant supply of 

gold for deposition onto the sample. The majority of these samples produced a grade of 2. 

When both the gold nanoparticle solution bath and the reduction solution bath were under 

constant agitation for the entire submersion time, higher levels of development were 

achieved with even distribution of contrast throughout the fingermark samples, resulting in 

most samples being graded at a 3. To investigate the dependency of higher levels of 

fingermark development on the agitation of the individual solution baths, a trial was done in 

which only the gold nanoparticle solution bath was under constant agitation for the 

submersion time and the reduction bath was left untouched. This was compared to samples 

that underwent the process with both solution baths under constant agitation, as illustrated 

in Figure 8. 



 

Figure 8: Latent fingermarks developed on Nu World Stone Paper using SMD II with (a) only the gold 

nanoparticle solution bath under constant shaking and (b) both active solution baths under constant 

shaking. 

Higher levels of fingermark ridge detail development appear to be primarily dependent on 

the constant agitation of the gold nanoparticle solution bath, as the majority of samples 

from both trials achieved the same grade of 2. The contrast obtained by the fingermarks 

processed under constant agitation of both solution baths, however, is much greater. This is 

evident when comparing the resulting median of 2.5 to a median of 2 for samples processed 

with only the nanoparticle bath under constant agitation. The level of fingermark 

development achieved is therefore affected by the deposition of gold nanoparticles onto 

the fingermark residue, while the degree of contrast is influenced by the reduction of gold 

onto the deposited nanoparticles. This result is consistent with the findings of Durussel et al. 

on SMD I (15). 

3.5 Operational substrates experimentation 

The SMD II procedure was applied to latent fingermarks on a range of different substrates to 

test its efficacy. A summary of the achieved fingermark grades on these various surfaces is 

listed in Table 5, along with a categorisation of the type of fingermark development 

obtained on each surface.  
  



Table 5: Grading and fingermark development data obtained on a range of different substrates tested 

using SMD II. 

Substrate 
Most common 

fingermark grade 

Contrast obtained 

OfficeMax® recycled white copy paper 3 Dark ridges 

Nu World® Stone Paper  4 Dark ridges 

White Post It® note 1 Dark ridges 

HP® matte photo paper  2 Dark ridges 

Optix® green copy paper 4 Dark ridges 

Marbig® polypropylene document sleeve 3 
Dark ridges, with light gold 

plating of background 

Fuji Xerox® white copy paper 1 

Dark ridges, with heavy 

purple background 

staining 

Confoil® aluminium foil 2 White ridges 

Glossy white paper from International Association 

for Identification’s “IDentification News” newsletter 
2 

White ridges 

Polymethyl methacrylate white car paint  4 
White ridges, with heavy 

gold plating of background 

Polycarbonate Lite-On® Compact Disk 4 
White ridges, with light 

gold plating of background 

Optix® black cardboard 1 Gold ridges 

Patterned wrapping paper 3 Gold ridges 

Curtin University cardboard document wallet 1 
Dark ridges, with damage 

to substrate 

Gormack Graph Papers® ruled graph paper 1 
Dark ridges, with damage 

to substrate 

Olympic® thin white exercise book paper 2 
Dark ridges, with damage 

to substrate 

Spank Publishing® thick white notebook paper 1 
Dark ridges, with damage 

to substrate 

Polyethylene Kartell® laboratory bottle 1 Reversed development 

Polyethylene terephthalate Cool Ridge® water 

bottle 
2 

Reversed development 

Polypropylene takeaway container 1 Reversed development 

Mikro® glass microscope slide 1 Reversed development 

Coke Zero® aluminium can 1 No visible ridge detail 

White paper from American Academy of Forensic 

Sciences’ “Academy News” newsletter 
1 

No visible ridge detail 

An example of each of these individual categories of fingermarks obtained is illustrated in 

Table 6 below. Samples that have been categorised under ‘dark ridges’ allowed for the 

visualisation of an expected dark grey coloured fingermark on their surface, while samples 



labelled as ‘white ridges’ and ‘gold ridges’ resulted in white or gold coloured fingermarks on 

their respective surfaces in a similar fashion. 

Table 6: Examples of fingermarks developed using SMDII on a range of different surfaces. 

 
OfficeMax® 
recycled white 
copy paper 

 
Nu World® Stone 
Paper 

 
White Post It® 
note 

 
HP® matte photo 
paper 

 
Optix® green 
copy paper 

 
Marbig® 
polypropylene 
document sleeve 

 
Fuji Xerox® white 
copy paper 

 
Confoil® 
aluminium foil 

 
International 
Association for 
Identification’s 
“IDentification 
News” newsletter 

 
Polymethyl 
methacrylate 
white car paint 

 
Polycarbonate 
Lite-On® Compact 
Disk 

 
Optix® black 
cardboard 

 
Patterned 
wrapping paper 

 
Curtin University 
cardboard 
document wallet 

 
Gormack Graph 
Papers® ruled 
graph paper 

 
Olympic® thin 
white exercise 
book paper 

 
Spank Publishing® 
thick white 
notebook paper 

 
Polyethylene 
Kartell® 
laboratory bottle 

 
Polyethylene 
terephthalate 
Cool Ridge® 
water bottle 

 
Polypropylene 
takeaway 
container 

 
Mikro® glass 
microscope slide 

 
Coke Zero® 
aluminium can 

 
American 
Academy of 
Forensic Sciences’ 
“Academy News” 
newsletter 

 



The majority of the ‘white ridge’ fingermarks obtained were on surfaces that experienced a 

significant degree of background staining, or in some cases gold plating, such as on the 

polymethyl methacrylate white car paint sample. The ‘gold ridge’ fingermark illustrated on 

the wrapping paper surface is a very significant result, as attempts at latent fingermark 

detection on this substrate using techniques such as Nile blue and Oil Red O have been 

unsuccessful due to both the smooth, glossy material and the various bright colours and 

patterns covering the surface (36, 37). A small number of substrates experienced a degree 

of damage throughout the SMD II procedure due to the long immersion time in water as 

well as the acidic conditions of the gold nanoparticle solution bath (pH 2.40), although they 

still resulted in visible fingermark development, such as that obtained on the thin exercise 

book paper. Finally, samples categorised as ‘reversed development’ appeared to experience 

heavy pink background staining of the substrate yet no staining of the fingermark ridges, 

generally resulting in the so-called reverse fingermark, or in some cases a blank space where 

the fingermark was situated. A similar phenomenon has been noted on paper surfaces when 

using gold nanoparticles modified to specifically target the cellulose substrate (38, 39). In 

this work we did not observe reversed or “empty” developed marks on paper, which is not 

surprising as the gold nanoparticles were not modified as those in the earlier work by Almog 

and co-workers. In a similar fashion this phenomenon has been observed through when 

using vacuum metal deposition (VMD) for latent fingermark detection, with reverse 

fingermarks being obtained on low-density polyethylene surfaces (40-42). The deposition of 

zinc onto the fingermark residues rather than the substrate is suggested to be due to the 

plastic surface absorbing the organic constituents of the fingermark residues, leaving behind 

a solid inorganic material that is less permeable to the gold than the plastic (43). 

Alternatively, it has been proposed that the unusual result may be produced by interactions 

between the substrate and gold layer, leaving the gold unable to act as a viable nucleation 

site for zinc deposition (40). While the mechanism of SMD II is currently undetermined, 

these suggestions regarding VMD can potentially also explain the reversed development 

obtained on plastic surfaces through the use of SMD II. In recent studies using atomic force 

microscopy we observed the propagation of thin films (0.2-1.1 nm  in thickness) of material 

across the furrows of latent fingermarks deposited on glass over the first 24 hours after 

deposition (44). We postulated that this may also contribute to the “reverse” development 

encountered in VMD, and that may also be the case here. 

These diverse results are clearly dependent on the properties of the substrate and their 

interactions with the gold nanoparticles; however, without knowing how the method 

operates to target the latent fingermark residue, it is difficult to explain the production of 

these fingermarks with various appearances. To gain an idea of why certain substrates 

interact with the gold nanoparticles and others do not, it is important to acquire an 

understanding of the mechanism behind the development technique (4). Regardless of the 

type of fingermark visualisation obtained, the SMD II procedure is clearly applicable to a 

wide range of substrates, including porous, non-porous, and semi-porous surfaces. It has 



also proven to be successful for latent fingermark detection on substrates such as wrapping 

paper that are difficult surfaces known to result in poor fingermark visualisation using a 

range of differing development procedures. 

4. Conclusions 

The purpose of this study was to investigate single metal deposition (SMD) II as a latent 

fingermark detection technique from an operational point of view. Gold nanoparticles of 

different diameters were synthesised by altering the length of the boiling time of gold salt in 

water prior to adding the reducing agents; larger nanoparticles than desired can be 

obtained by minimising the boiling time, while much smaller nanoparticles are produced 

through extended boiling time. After experimentation with a range of different gold 

nanoparticle sizes, solution temperatures, and levels of agitation, it was found that optimal 

development of fingermarks using SMD II was achieved through the use of red-coloured 

gold nanoparticle stock solutions containing nanoparticles of approximate diameter 15-

21 nm, applied to fingermarks at room temperature (20-25 °C), with both the gold 

nanoparticle solution bath and the reduction bath under constant agitation throughout the 

entire submersion time. These parameters are consistent with those published, validating 

that the SMD II technique does not appear to be dependent on the geographic location. 

While the procedure’s efficacy was sensitive to all of these conditions, satisfactory levels of 

development can still be achieved with slight variation of these parameters, demonstrating 

the robustness of the method and its associated suitability for operational use. The 

procedure was shown to be effective on a large range of porous, non-porous, and semi-

porous substrates, including previously difficult surfaces that are known to hinder latent 

fingermark development when using various other detection techniques. The properties of 

each substrate had a significant effect on the appearance of the development obtained, 

allowing for the production of a range of visually different fingermarks, some of which have 

been similarly observed with the use of other detection methods such as vacuum metal 

deposition (40, 41).  

Acknowledgements 

The authors thank all of the fingermark donors who participated in this study, as well as 

Rhys Tilbury (Curtin University) for his valuable assistance and discussions during the course 

of the research. We thank Dr Daniel Southam (Curtin University) for designing and 

producing the graphical abstract. Ethics approval was granted prior to fingermark collection 

by the Curtin University Human Research Ethics Committee (approval number SMEC-47-13). 

This research did not receive any specific grant from funding agencies in the public, 

commercial, or not-for-profit sectors. 

 

 



References 

1. Bécue A, Cantu AA. Fingermark Detection Using Nanoparticles. In: Ramotowski R, editor. Lee 

and Gaensslen's Advances in Fingerprint Technology. 3rd ed: CRC Press; 2012. p. 307-48. 

2. Dilag J, Kobus HJ, Ellis AV. Nanotechnology as a New Tool for Fingermark Detection: A 
Review. Current Nanoscience. 2011;7(2):153-9. 
3. Hazarika P, Russell DA. Advances in Fingerprint Analysis, International Edition. Angewandte 
Chemie. 2012;51:3524-31. 
4. Moret S, Becue A, Champod C. Nanoparticles for fingermark detection: an insight into the 
reaction mechanism. Nanotechnology. 2014;25(42):425502. 
5. Li MD, Cheng TL, Tseng WL. Nonionic surfactant-capped gold nanoparticles for selective 
enrichment of aminothiols prior to CE with UV absorption detection. Electrophoresis. 
2009;30(2):388-95. 
6. Ivanov MR, Bednar HR, Haes AJ. Investigations of the mechanism of gold nanoparticle 
stability and surface functionalization in capillary electrophoresis. ACS Nano. 2009;3(2):386-94. 
7. Verma HN, Singh P, Chavan RM. Gold nanoparticle: synthesis and characterization. 
Veterinary World. 2014;7(2):72-7. 
8. Bécue A, Scoundrianos A, Champod C, Margot P. Fingermark detection based on the in situ 
growth of luminescent nanoparticles--towards a new generation of multimetal deposition. Forensic 
Science International. 2008;179(1):39-43. 
9. Liu X, Atwater M, Wang J, Huo Q. Extinction coefficient of gold nanoparticles with different 
sizes and different capping ligands. Colloids and Surfaces B: Biointerfaces. 2007;58(1):3-7. 
10. Wang A, Ng HP, Xu Y, Li Y, Zheng Y, Yu J, et al. Gold Nanoparticles: Synthesis, Stability Test, 
and Application for the Rice Growth. Journal of Nanomaterials. 2014;2014:1-6. 
11. Bécue A, Moret S, Champod C, Margot P. Use of stains to detect fingermarks. Biotechnic & 
Histochemistry. 2011;86(3):140-60. 
12. Bécue A, Scoundrianos A, Moret S. Detection of fingermarks by colloidal gold (MMD/SMD)--
beyond the pH 3 limit. Forensic Science International. 2012;219(1-3):39-49. 
13. Stauffer E, Bécue A, Singh KV, Thampi KR, Champod C, Margot P. Single-metal deposition 
(SMD) as a latent fingermark enhancement technique: an alternative to multimetal deposition 
(MMD). Forensic Science International. 2007;168(1):e5-9. 
14. Fairley C, Bleay SM, Sears VG, NicDaeid N. A comparison of multi-metal deposition processes 
utilising gold nanoparticles and an evaluation of their application to 'low yield' surfaces for finger 
mark development. Forensic Science International. 2012;217(1-3):5-18. 
15. Durussel P, Stauffer E, Bécue A, Champod C, Margot P. Single-Metal Deposition: 
Optimization of this Fingermark Enhancement Technique. Journal of Forensic Identification. 
2009;59(1):80-96. 
16. Bécue A, Moret S. Single-Metal Deposition for Fingermark Detection—A Simpler and More 
Efficient Protocol. Journal of Forensic Identification. 2015;65(2):118-37. 
17. Bécue A. Les nanoparticules, une nouvelle arme contre le crime? L’Actualité Chimique 
2010;342-343. 
18. (IFRG) IFRG. Guidelines for the Assessment of Fingermark Detection Techniques. Journal of 
Forensic Identification. 2014;64(2):174-200. 
19. Spindler X, Shimmon R, Roux C, Lennard C. The effect of zinc chloride, humidity and the 
substrate on the reaction of 1,2-indanedione-zinc with amino acids in latent fingermark secretions. 
Forensic Science International. 2011;212(1-3):150-7. 
20. Bicknell DE, Ramotowski RS. Use of an optimized 1,2-indanedione process for the 
development of latent prints. Journal of Forensic Sciences. 2008;53(5):1108-16. 



21. Wallace-Kunkel C, Lennard C, Stoilovic M, Roux C. Optimisation and evaluation of 1,2-
indanedione for use as a fingermark reagent and its application to real samples. Forensic Science 
International. 2007;168(1):14-26. 
22. Switzerland M. Climate Switzerland: Switzerland Tourism; 2015 [Available from: 
http://www.myswitzerland.com/en-au/climate.html. 
23. Switzerland SI. Climate of Switzerland Switzerland: Swiss Universities' International 
Marketing (SUIM); 2015 [Available from: http://www.studyinginswitzerland.ch/country-climate.htm. 
24. Australia Co. Australian Climate Influences Australia: Australian Government; 2010 
[Available from: http://www.bom.gov.au/climate/about/?bookmark=introduction. 
25. Australia T. Weather in Perth Australia: Australia.com; 2015 [Available from: 
http://www.australia.com/en/facts/weather/perth-weather.html. 
26. Kent T. Standardizing protocols for fingerprint reagent testing. Journal of Forensic 
Identification. 2010;60(3):371-9. 
27. Sears VG, Bleay SM, Bandey HL, Bowman VJ. A Methodology for Finger Mark Research. 
Science & Justice. 2012;52:145-60. 
28. Bandey HL, Bleay SM, Gibson AP, editors. Powders for fingerprint development 2013 CRC 
Press  
29. Fritz P, Van Bronswijk W, Patton E, Lewis SW. Variability in visualization of latent fingermarks 
developed with 1,2-indanedione / zinc chloride. Journal of Forensic Identification. 2013;63(6):698-
713. 
30. Bac LH, Kim JS, Kim JC. Size, Optical and Stability Properties of Gold Nanoparticles 
Synthesized by Electrical Explosion of Wire in Different Aqueous Media. Reviews on Advanced 
Materials Science. 2011;28:117-21. 
31. Berciaud S, Cognet L, Tamarat P, Lounis B. Observation of intrinsic size effects in the optical 
response of individual gold nanoparticles. Nano Letters. 2005;5(3):515-8. 
32. Sattler KD. Nanoelectronics and Nanophotonics: CRC Press; 2010. 
33. Huang X, El-Sayed MA. Gold nanoparticles: Optical properties and implementations in cancer 
diagnosis and photothermal therapy. Journal of Advanced Research. 2010;1(1):13-28. 
34. Roduner E. Size matters: why nanomaterials are different. Chemical Society Reviews. 
2006;35(7):583-92. 
35. Schnetz B, Margot P. Technical note: latent fingermarks, colloidal gold and multimetal 
deposition (MMD) - Optimisation of the method. Forensic Science International. 2001;118:21-8. 
36. Frick AA, Fritz P, Lewis SW, van Bronswijk W. A modified Oil Red O reagent for the detection 
of latent fingermarks on porous substrates Journal of Forensic Identification 2012  
37. Frick AA, Busetti F, Cross A, Lewis SW. Aqueous Nile blue: a simple, versatile and safe 
reagent for the detection of latent fingermarks. Chemical Communications. 2014;50:3341-3. 
38. Jaber N, Lesniewski A, Gabizon H, Shenawi S, Mandler D, Almog J. Visualization of Latent 
Fingermarks by Nanotechnology: Reversed Development on Paper—A Remedy to the Variation in 
Sweat Composition. Angewandte Chemie International Edition. 2012;51(49):12224-7. 
39. Shenawi S, Jaber N, Almog J, Mandler D. A novel approach to fingerprint visualization on 
paper using nanotechnology: reversing the appearance by tailoring the gold nanoparticles' capping 
ligands. Chemical Communications. 2013;49(35):3688-90. 
40. Jones N, Stoilovic M, Lennard C, Roux C. Vacuum metal deposition: factors affecting normal 
and reverse development of latent fingerprints on polyethylene substrates. Forensic Science 
International. 2001;115:73-88. 
41. Jones N, Mansour D, Stoilovic M, Lennard C, Roux C. The influence of polymer type, print 
donor and age on the quality of fingerprints developed on plastic substrates using vacuum metal 
deposition. Forensic Science International. 2001;124(2-3):167-77. 
42. Jones N, Stoilovic M, Lennard C, Roux C. Vacuum metal deposition developing latent 
fingerprints on polyethylene substrates after the deposition of excess gold. Forensic Science 
International. 2001;123(1):5-12. 

http://www.myswitzerland.com/en-au/climate.html
http://www.studyinginswitzerland.ch/country-climate.htm
http://www.bom.gov.au/climate/about/?bookmark=introduction
http://www.australia.com/en/facts/weather/perth-weather.html


43. Kent T, Thomas GL, Reynoldson TE, East HW. A Vacuum Coating Technique for the 
Development of Latent Fingerprints on Polythene. Journal of the Forensic Science Society. 
1976;16(2):93-101. 
44. Dorakumbura BN, Becker T, Lewis SW. Nanomechanical mapping of latent fingermarks: A 
preliminary investigation into the changes in surface interactions and topography over time. 
Forensic Science International. 2016;267:16-24. 

 

 


