1,148 research outputs found

    Noncovalent complexation of amphotericin-B with Poly(α-glutamic acid).

    No full text
    A noncovalent complex of amphotericin B (AmB) and poly(α-glutamic acid) (PGA) was prepared to develop a safe and stable formulation for the treatment of leishmaniasis. The loading of AmB in the complex was in the range of ∼20-50%. AmB was in a highly aggregated state with an aggregation ratio often above 2.0. This complex (AmB-PGA) was shown to be stable and to have reduced toxicity to human red blood cells and KB cells compared to the parent compound; cell viability was not affected at an AmB concentration as high as 50 and 200 μg/mL respectively. This AmB-PGA complex retained AmB activity against intracellular Leishmania major amastigotes in the differentiated THP-1 cells with an EC50 of 0.07 ± 0.03-0.08 ± 0.01 μg/mL, which is similar to Fungizone (EC50 of 0.06 ± 0.01 μg/mL). The in vitro antileishmanial activity of the complex against Leishmania donovani was retained after storage at 37 °C for 7 days in the form of a solution (EC50 of 0.27 ± 0.03 to 0.35 ± 0.04 μg/mL) and for 30 days as a solid (EC50 of 0.41 ± 0.07 to 0.63 ± 0.25 μg/mL). These encouraging results indicate that the AmB-PGA complex has the potential for further development

    Obstacle avoidance in social groups: : new insights from asynchronous models

    Get PDF
    For moving animals, the successful avoidance of hazardous obstacles is an important capability. Despite this, few models of collective motion have addressed the relationship between behavioural and social features and obstacle avoidance. We develop an asynchronous individual-based model for social movement which allows social structure within groups to be included. We assess the dynamics of group navigation and resulting collision risk in the context of information transfer through the system. In agreement with previous work, we find that group size has a nonlinear effect on collision risk. We implement examples of possible network structures to explore the impact social preferences have on collision risk. We show that any social heterogeneity induces greater obstacle avoidance with further improvements corresponding to groups containing fewer influential individuals. The model provides a platform for both further theoretical investigation and practical application. In particular, we argue that the role of social structures within bird flocks may have an important role to play in assessing the risk of collisions with wind turbines, but that new methods of data analysis are needed to identify these social structures

    Pharmacodynamics and Biodistribution of Single-Dose Liposomal Amphotericin B at Different Stages of Experimental Visceral Leishmaniasis.

    Get PDF
    Visceral leishmaniasis is a neglected tropical disease that causes significant morbidity and mortality worldwide. Characterization of the pharmacokinetics and pharmacodynamics of antileishmanial drugs in preclinical models is important for drug development and use. Here we investigated the pharmacodynamics and drug distribution of liposomal amphotericin B (AmBisome) in Leishmania donovani-infected BALB/c mice at three different dose levels and two different time points after infection. We additionally compared drug levels in plasma, liver, and spleen in infected and uninfected BALB/c mice over time. At the highest administered dose of 10 mg/kg AmBisome, >90% parasite inhibition was observed within 2 days after drug administration, consistent with drug distribution from blood to tissue within 24 h and a fast rate of kill. Decreased drug potency was observed in the spleen when AmBisome was administered on day 35 after infection, compared to day 14 after infection. Amphotericin B concentrations and total drug amounts per organ were lower in liver and spleen when AmBisome was administered at the advanced stage of infection and compared to those in uninfected BALB/c mice. However, the magnitude of difference was lower when total drug amounts per organ were estimated. Differences were also noted in drug distribution to L. donovani-infected livers and spleens. Taken together, our data suggest that organ enlargement and other pathophysiological factors cause infection- and organ-specific drug distribution and elimination after administration of single-dose AmBisome to L. donovani-infected mice. Plasma drug levels were not reflective of changes in drug levels in tissues

    Pharmacodynamics and cellular accumulation of amphotericin B and miltefosine in Leishmania donovani-infected primary macrophages.

    Get PDF
    Objectives: We examined the in vitro pharmacodynamics and cellular accumulation of the standard anti-leishmanial drugs amphotericin B and miltefosine in intracellular Leishmania donovani amastigote-macrophage drug assays. Methods: Primary mouse macrophages were infected with L. donovani amastigotes. In time-kill assays infected macrophages were exposed to at least six different concentrations of serially diluted drugs and the percentage of infected macrophages was determined after 6, 12, 24, 48, 72 and 120 h of exposure. Cellular drug accumulation was measured following exposure to highly effective drug concentrations for 1, 6, 24, 48 and 72 h. Data were analysed through a mathematical model, relating drug concentration to the percentage of infected cells over time. Host cell membrane damage was evaluated through measurement of lactate dehydrogenase release. The effect of varying the serum and albumin concentrations in medium on the cellular accumulation levels of miltefosine was measured. Results: Amphotericin B was more potent than miltefosine (EC50 values of 0.65 and 1.26 μM, respectively) and displayed a wider therapeutic window in vitro. The kinetics of the cellular accumulation of amphotericin B was concentration- and formulation-dependent. At an extracellular concentration of 10 μM miltefosine maximum cellular drug levels preceded maximum anti-leishmanial kill. Miltefosine induced membrane damage in a concentration-, time- and serum-dependent manner. Its cellular accumulation levels increased with decreasing amounts of protein in assay medium. Conclusions: We have developed a novel approach to investigate the cellular pharmacology of anti-leishmanial drugs that serves as a model for the characterization of new drug candidates

    Understanding the Stickiness of Commodity Supply Chains Is Key to Improving Their Sustainability

    Get PDF
    Commodity trade is central to the global economy but is also associated with socio-environmental impacts, for example, deforestation, especially in producer countries. It is crucial to understand how geographic sourcing patterns of commodities and commercial relationships between places and actors influence land-use dynamics, socio-economic development, and environmental degradation. Here, we propose a concept and methodological approach to analyze the geographic stickiness of commodity supply chains, which is the maintenance of supply network configurations over time and across perturbations. We showcase policy-relevant metrics for all Brazilian soy exports between 2003 and 2017, using high-resolution supply chain data from www.trase.earth. We find that the Brazilian soy traders with the largest market share exhibit stickier geographic sourcing patterns, and that the supply network configurations between production places and traders become increasingly sticky in subsequent years. Understanding trade stickiness is crucial for supply chain accountability, because it directly affects the effectiveness of zero-deforestation commitments

    Novel 2D and 3D Assays to Determine the Activity of Anti-Leishmanial Drugs.

    Get PDF
    The discovery of novel anti-leishmanial compounds remains essential as current treatments have known limitations and there are insufficient novel compounds in development. We have investigated three complex and physiologically relevant in vitro assays, including: (i) a media perfusion based cell culture model, (ii) two 3D cell culture models, and (iii) iPSC derived macrophages in place of primary macrophages or cell lines, to determine whether they offer improved approaches to anti-leishmanial drug discovery and development. Using a Leishmania major amastigote-macrophage assay the activities of standard drugs were investigated to show the effect of changing parameters in these assays. We determined that drug activity was reduced by media perfusion (EC50 values for amphotericin B shifted from 54 (51-57) nM in the static system to 70 (61-75) nM under media perfusion; EC50 values for miltefosine shifted from 12 (11-15) µM in the static system to 30 (26-34) µM under media perfusion) (mean and 95% confidence intervals), with corresponding reduced drug accumulation by macrophages. In the 3D cell culture model there was a significant difference in the EC50 values of amphotericin B but not miltefosine (EC50 values for amphotericin B were 34.9 (31.4-38.6) nM in the 2D and 52.3 (46.6-58.7) nM in 3D; EC50 values for miltefosine were 5.0 (4.9-5.2) µM in 2D and 5.9 (5.5-6.2) µM in 3D (mean and 95% confidence intervals). Finally, in experiments using iPSC derived macrophages infected with Leishmania, reported here for the first time, we observed a higher level of intracellular infection in iPSC derived macrophages compared to the other macrophage types for four different species of Leishmania studied. For L. major with an initial infection ratio of 0.5 parasites per host cell the percentage infection level of the macrophages after 72 h was 11.3% ± 1.5%, 46.0% ± 1.4%, 66.4% ± 3.5% and 75.1% ± 2.4% (average ± SD) for the four cells types, THP1 a human monocytic cell line, mouse bone marrow macrophages (MBMMs), human bone marrow macrophages (HBMMs) and iPSC derived macrophages respectively. Despite the higher infection levels, drug activity in iPSC derived macrophages was similar to that in other macrophage types, for example, amphotericin B EC50 values were 35.9 (33.4-38.5), 33.5 (31.5-36.5), 33.6 (30.5-not calculated (NC)) and 46.4 (45.8-47.2) nM in iPSC, MBMMs, HBMMs and THP1 cells respectively (mean and 95% confidence intervals). We conclude that increasing the complexity of cellular assays does impact upon anti-leishmanial drug activities but not sufficiently to replace the current model used in HTS/HCS assays in drug discovery programmes. The impact of media perfusion on drug activities and the use of iPSC macrophages do, however, deserve further investigation

    Topical Treatment for Cutaneous Leishmaniasis: Dermato-Pharmacokinetic Lead Optimization of Benzoxaboroles.

    Get PDF
    Cutaneous leishmaniasis (CL) is caused by several species of the protozoan parasite Leishmania, affecting an estimated 10 million people worldwide. Previously reported strategies for the development of topical CL treatments have focused primarily on drug permeation and formulation optimization as the means to increase treatment efficacy. Our approach aims to identify compounds with antileishmanial activity and properties consistent with topical administration. Of the test compounds, five benzoxaboroles showed potent activity (50% effective concentration [EC50] < 5 μM) against intracellular amastigotes of at least one Leishmania species and acceptable activity (20 μM < EC50 < 30 μM) against two more species. Benzoxaborole compounds were further prioritized on the basis of the in vitro evaluation of progression criteria related to skin permeation, such as the partition coefficient and solubility. An MDCKII-hMDR1 cell assay showed overall good permeability and no significant interaction with the P-glycoprotein transporter for all substrates except LSH002 and LSH031. The benzoxaboroles were degraded, to some extent, by skin enzymes but had stability superior to that of para-hydroxybenzoate compounds, which are known skin esterase substrates. Evaluation of permeation through reconstructed human epidermis showed LSH002 to be the most permeant, followed by LSH003 and LSH001. Skin disposition studies following finite drug formulation application to mouse skin demonstrated the highest permeation for LSH001, followed by LSH003 and LSH002, with a significantly larger amount of LSH001 than the other compounds being retained in skin. Finally, the efficacy of the leads (LSH001, LSH002, and LSH003) against Leishmania major was tested in vivo LSH001 suppressed lesion growth upon topical application, and LSH003 reduced the lesion size following oral administration

    Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity.

    Get PDF
    Consumption of globally traded agricultural commodities like soy and palm oil is one of the primary causes of deforestation and biodiversity loss in some of the world's most species-rich ecosystems. However, the complexity of global supply chains has confounded efforts to reduce impacts. Companies and governments with sustainability commitments struggle to understand their own sourcing patterns, while the activities of more unscrupulous actors are conveniently masked by the opacity of global trade. We combine state-of-the-art material flow, economic trade, and biodiversity impact models to produce an innovative approach for understanding the impacts of trade on biodiversity loss and the roles of remote markets and actors. We do this for the production of soy in the Brazilian Cerrado, home to more than 5% of the world´s species. Distinct sourcing patterns of consumer countries and trading companies result in substantially different impacts on endemic species. Connections between individual buyers and specific hot spots explain the disproportionate impacts of some actors on endemic species and individual threatened species, such as the particular impact of European Union consumers on the recent habitat losses for the iconic giant anteater (Myrmecophaga tridactyla). In making these linkages explicit, our approach enables commodity buyers and investors to target their efforts much more closely to improve the sustainability of their supply chains in their sourcing regions while also transforming our ability to monitor the impact of such commitments over time.UK Global Food Security programme (Project 304 BB/N02060X/1

    Pharmacokinetic / pharmacodynamic relationships of liposomal amphotericin B and miltefosine in experimental visceral leishmaniasis.

    Get PDF
    BACKGROUND: There is a continued need to develop effective and safe treatments for visceral leishmaniasis (VL). Preclinical studies on pharmacokinetics and pharmacodynamics of anti-infective agents, such as anti-bacterials and anti-fungals, have provided valuable information in the development and dosing of these agents. The aim of this study was to characterise the pharmacokinetic and pharmacodynamic properties of the anti-leishmanial drugs AmBisome and miltefosine in a preclinical disease model of VL. METHODOLOGY / PRINCIPAL FINDINGS: BALB/c mice were infected with L. donovani (MHOM/ET/67/HU3) amastigotes. Groups of mice were treated with miltefosine (orally, multi-dose regimen) or AmBisome (intravenously, single dose regimen) or left untreated as control groups. At set time points groups of mice were killed and plasma, livers and spleens harvested. For pharmacodynamics the hepatic parasite burden was determined microscopically from tissue impression smears. For pharmacokinetics drug concentrations were measured in plasma and whole tissue homogenates by LC-MS. Unbound drug concentrations were determined by rapid equilibrium dialysis. Doses exerting maximum anti-leishmanial effects were 40 mg/kg for AmBisome and 150 mg/kg (cumulatively) for miltefosine. AmBisome displayed a wider therapeutic range than miltefosine. Dose fractionation at a total dose of 2.5 mg/kg pointed towards concentration-dependent anti-leishmanial activity of AmBisome, favouring the administration of large doses infrequently. Protein binding was >99% for miltefosine and amphotericin B in plasma and tissue homogenates. CONCLUSION / SIGNIFICANCE: Using a PK/PD approach we propose optimal dosing strategies for AmBisome. Additionally, we describe pharmacokinetic and pharmacodynamic properties of miltefosine and compare our findings in a preclinical disease model to available knowledge from studies in humans. This approach also presents a strategy for improved use of animal models in the drug development process for VL
    corecore