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SUMMARY

Commodity trade is central to the global economy but is also associated with socio-environmental impacts,

for example, deforestation, especially in producer countries. It is crucial to understand how geographic

sourcing patterns of commodities and commercial relationships between places and actors influence

land-use dynamics, socio-economic development, and environmental degradation. Here, we propose a

concept and methodological approach to analyze the geographic stickiness of commodity supply chains,

which is the maintenance of supply network configurations over time and across perturbations. We show-

case policy-relevant metrics for all Brazilian soy exports between 2003 and 2017, using high-resolution sup-

ply chain data from www.trase.earth. We find that the Brazilian soy traders with the largest market share

exhibit stickier geographic sourcing patterns, and that the supply network configurations between produc-

tion places and traders become increasingly sticky in subsequent years. Understanding trade stickiness is

crucial for supply chain accountability, because it directly affects the effectiveness of zero-deforestation

commitments.

INTRODUCTION

Over recent decades, the growth in agricultural trade has pro-

moted economic development and food security but also

resulted in negative socio-economic and environmental im-

pacts.1–4 Trade and consumption of agricultural commodities

are critical drivers of land-use change, deforestation, biodiversity

loss,5,6 and carbon emissions.7,8

The production of internationally traded and financed com-

modities, such as soy (see Supplemental Experimental

SCIENCE FOR SOCIETY Consumption of food in locations far from production is a cause of forest loss,

especially in developing countries that lack the resources, capacity, or political will to distinguish legal

from illegal deforestation. In response, civil society and consumers have pushed companies to make

zero-deforestation commitments. For these commitments to be effective, supply chain transparency is

crucial, but stickiness also plays a key role. Stickiness refers to stable and consistent commercial relation-

ships between companies and regions. Stickiness may influence how companies attain zero-deforestation

commitments.

For instance, companies with non-sticky sourcing patterns may move geographically, not committing to

achieving long-term sustainability. Here, we look at the soy trade in Brazil, the world’s largest exporter, to

analyze supply chain stickiness and explain why it is essential to curb deforestation. We show that stickiness

is associated with deforestation risk.

100 One Earth 3, 100–115, July 24, 2020 ª 2020 The Author(s). Published by Elsevier Inc.
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Procedures, The Soy Supply Chain in Brazil), beef, and palm oil,

dominates land use in many agricultural regions. It is responsible

for over 27% of recent global forest loss.6 Supply chain actors,

such as food processors, slaughterhouses, traders, and re-

tailers, including countries that purchase these commodities,

play a crucial role in shaping land-use dynamics by influencing

demand, investments in infrastructure, financing, and govern-

ment decisions.9–11

An increasing number of governance interventions target

these supply chain actors, including pushes for zero-deforesta-

tion commitments (ZDC). ZDCs aim to zero the deforestation

driven by commodity supply chains, such as palm oil, beef, or

soy. There are ZDCs signed by individual companies, but also

by multi-stakeholder coalitions, including national and subna-

tional governments and non-government organizations

(NGOs), where each stakeholder assumes a specific role. For

example, companies implement ZDCs, NGOs monitor compli-

ance, and governments provide the tools. Examples of ZDCs

can be in the form of sustainability roundtables (e.g., Roundtable

on Sustainable Palm Oil), and broader governance fora (e.g.,

Tropical Forests Alliance).12

The Amazon Soy Moratorium (ASM), another ZDC example,

was the first voluntary ZDC in the tropics. It was a response

from soy traders to pressure from retailers and NGOs, resulting

in the agreement to not purchase soy from areas deforested after

July 2006 in the Brazilian Amazon. The ASM is reputed to have

reduced direct deforestation to soy fields from 30% to 1% of

annual soy expansion in the Brazilian Amazon.13 ZDCs, com-

bined with public policies, are crucial to address deforestation,

as commodity supply chains drive about 5million hectares of for-

est loss every year.6

ZDCs result from consumer demand and NGO pres-

sure,12,14,15 but also from corporate recognition that sustainabil-

ity commitments may increase both supply chain control and

reputation.16 The accountability and engagement of supply

chain upstream actors are thus critical for these initiatives to

be successful and deliver the expected impacts. In agricultural

supply chains, for example, implementing ZDCs requires

the engagement between food buyers, processors, and

farmers.14,17–19 Understanding the geographic patterns of

supply chain relationships can contribute to holding corpora-

tions accountable for what happens in the production regions

to which they are linked.14,18,20

Supply chain transparency is a prerequisite for corporate

land use accountability14 and the monitoring of ZDCs,18 such

as through the accountability framework initiative (https://

accountability-framework.org/). Knowledge of how much, how,

and why supply chain actors engage with each other and with

specific sourcing regions remains limited. Moreover, we need

an improved understanding of how andwhy actors shift sourcing

locations over time and how this influences land-use dynamics

and socio-environmental outcomes.12,15,19,21

Researching the patterns of relationships between actors and

regions over time is critical to understand different development

trajectories in rural landscapes, as these trajectories are shaped

by the responses of supply chain actors to biophysical, policy,

logistic, or socio-economic shocks and changes.12,22,23 Exam-

ining the spatial-temporal connections between commodity

buyers and sourcing regions can support governance and

accountability processes by informing on the potential effective-

ness of ZDCs,12,15 and on indirect and leakage effects where

sourcing relationships are displaced in response to policy

interventions.24

Markets are not entirely integrated and exhibit some stickiness,

i.e., some trading relationships persist under changing conditions

or show inertia in responding to price and other shocks.25 This

persistence is related to various factors, such as supply chain in-

frastructures in production regions and traders’ local expertise.26

Agricultural traders that have volatile geographic sourcing pat-

terns likely have weaker connections, credibility, and engage-

ment with farmers, and thus less capacity to transmit the zero-

deforestation signal or demand to their suppliers. Volatile traders

canmove from high to low deforestation risk regions after signing

a ZDC, thereby mitigating the direct risks in their supply chains,

but failing to improve the overall outcome. Traders with more

enduring commercial relationships may have enhanced rele-

vance and impact in their actions. Trade persistence justifies

robust accountability frameworks to reduce deforestation in

specific supply chains, as it increases the likelihood that these

supply chain actions will send a strong and sustained signal to

the actors in the production landscapes.14,16–18,27,28

Nevertheless, to date, research hasmostly focusedon country-

to-country persistence of trade relations. Current research lacks

a clear conceptual model for defining the relationship between

production landscapes, commodity traders, and consuming

markets, as well as empirical measures of it, mostly because of

insufficiently detailed and subnational data on supply chains.

The objectives of this paper are to develop (1) a conceptual

framework to analyze the geographic stickiness in global com-

modity trade, conceived as a measure of the stability and rigidity

over time of supply chain configurations, i.e., of the network of

trade linkages and flows between specific regions and actors;

(2) metrics to operationalize this framework and to measure stick-

iness empirically; and (3) hypotheses on how stickiness influences

the existence and effectiveness of supply chain ZDCs, and, more

broadly, the governance of supply chains for socio-environmental

sustainability. We focus on agricultural commodities and their

relation to land use, but the notion has broader relevance for other

supply chains and sustainability issues.

Empirically, we use the first supply chain maps linking subna-

tional producing regions of Brazilian soy to global markets, iden-

tifying trading companies, between 2003 and 2017, developed

by the Trase initiative (www.trase.earth). In the international

trade of Brazilian soy, we measure the trade stickiness between

specific production and distribution places, companies engaged

in trading, and consumption countries.29 We apply temporal

network analysis to measure the similarity of the export supply

chain network over time, i.e., how stable are the commercial

relationships.

RESULTS

Conceptualizing Stickiness in Commodity Supply

Chains

We bridge theoretical and empirical approaches from three main

fields, agricultural and trade economics, global commodity

chains (GCCs) and global value chains (GVCs), and social-

ecological resilience,11,15,22,25,30–45,46–65,66–75 to propose a
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conceptualization of stickiness in global commodity supply

chains (see Designing a Conceptual Framework for Stickiness

in Experimental Procedures).

Based on this, we define stickiness in global commodity sup-

ply chains as the maintenance and recovery, over time and

through shocks, of supply chains’ geographic network configu-

rations, i.e., the network of trade linkages and flows between

specific places of production and consumption, and specific ac-

tors including producers, traders, retailers, and consumers. We

distinguish three interlinked dimensions of stickiness: (1) the

persistence of supply chain configurations over time, regardless

of the identification of any shock, and their (2) resistance to and

(3) recovery from shocks (Figure 1). These three dimensions can

be used to characterize supply chains as a whole, as well as spe-

cific actors and places in a supply chain.

The first dimension, persistence, is directly observable. In

contrast, assessing resistance and recovery requires the identi-

fication of a shock affecting supply chain relationships and an

analysis of their capacity to remain unaffected by it or to return

to their previous state. Thus, under an initial observation,

‘‘sticky’’ would correspond to ‘‘persistent.’’ A lack of persistence

likely reveals a lack of resistance. However, when analyzing the

response to specific shocks, it is possible to further qualify the

resistance or recovery to these specific shocks.

Persistence measures how much trade relations remain

similar over time—e.g., as traders consistently source products

from the same regions and sell to the same consumer markets—

or not. Persistence describes the patterns observed, absent

specific knowledge about factors (shocks, perturbations) that

could have affected the supply chain configuration.

Resistance measures the persistence of supply chain configu-

rations under specific shocks or perturbations. Perturbations may

affect certain places and supply chain actors. Perturbations result

from policy changes, natural phenomena (e.g., severe droughts,

excessive rainfall), governance interventions (e.g., new ZDCs),

shifts in land-usedecision logics (e.g., exhaustion of suitable lands

for expansion in a given geographic region), and market events

(e.g., significant changes in commodity prices), among others.

Recovery measures how trade relations restore after having

been disrupted by shocks in two ways. First, locations and ac-

tors that had stable relations can recover the same stable config-

uration of relations as before. Second, these locations or actors

may recover by reconfiguring their network toward another set of

persistent relationships, but with a different configuration of rela-

tions with different actors and places.

Metrics to Assess Stickiness in Brazil’s Soy Exports

We represent the Brazilian soy export supply chain29 as a tempo-

ral network76,77 (see Experimental Procedures). This temporal

network is the aggregate of soy transactions, or commercial re-

lationships, between three levels of supply chain actors (nodes),

over 2003–2017. These three levels of actors (n = 2,304) are lo-

gistics hubs (LHs; n = 468), exporting traders (n = 1,709), and im-

porting countries (n = 127). LHs are jurisdictions (municipalities)

of soy production and trade in Brazil (see Supplemental Experi-

mental Procedures). LHs aggregate the behavior of soy farmers

located within the logistic range of these logistics and commer-

cial hubs for soy processing and export. They are regional mar-

ket places for defining farm-gate soy prices, storage, and freight

fees, acting figuratively as soy ‘‘drains.’’

Traders include exporters and importers, who buy soy directly

from farmers or indirectly through local small cereals

Figure 1. The Three Dimensions of Stickiness

(A) Persistence is the property of supply chains to have trade linkage config-

urations that remain highly similar over time. Medium persistence may char-

acterize networks that have a medium similarity of trade linkages over time or

that oscillate between low and high similarities across pairs of succes-

sive years.

(B) Resistance is the property of maintaining linkages unaltered in relation to a

given shock.

(C) Recovery corresponds to the reestablishment of stable network configu-

rations after a shock, either with the same previous configuration or the sta-

bilization of a new configuration. The last two dimensions are assessed based

on an identified shock.
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warehouses and cooperatives located in these LHs or neigh-

boring municipalities. These traders export either raw or crushed

beans into oil, meal, and cake, which are primary inputs for ani-

mal feed, biofuels, or cooking oils, for example. Our dataset

comprises only export transactions, raw and crushed, thus

excluding soy transactions destined for domestic consumption

in Brazil.29,78 The dataset covers the period 2003–2017, where

each year is a snapshot of the network, aggregating all individual

soy transactions that occurred over that year between two ac-

tors in annual transactions. We thus represent the entire move-

ment of the supply chain over 2003–2017 as a set of 15 slices

or snapshots. We then compare these snapshots to calculate

the similarity of the supply chain network over time.

The network is directed, i.e., soy only flows in one direction,

from LHs to traders, and then from traders to countries. Flows

are either outgoing or incoming depending on the actor’s posi-

tion in the supply chain, i.e., while one actor is supplying soy (out-

going flow), the next one is sourcing it (incoming flow). We mea-

sure stickiness as the similarity or change in the configuration of

trading partners around each actor between two points in time—

i.e., two snapshots—employing metrics from temporal network

analysis (Ci and TCi; Equations 1 and 2 in Experimental Proced-

ures). Ci is the topological overlap,76which measures howmuch

the configuration of the supply chain network changes from the

first snapshot compared with the second. TCi is the temporal

average topological overlap, which is the average of several

consecutive Cis over time.

This measurement can be applied to the specific configuration

of commercial relations around one specific region or actor

(node), or at the overall network level. Ci, our primary stickiness

metric, measures the topological overlap—i.e., how much the

network configuration around each actor (node) changed be-

tween two snapshots. In other words, howmuch the commercial

relationships of this actor changed, for example, from 2003 to

2004 (Equation 1 in Experimental Procedures). TCi is the tempo-

ral average of Ci over a sequence of successive snapshots

covering the analyzed period (2003–2017) for each actor or

group of actors. C is the temporal correlation coefficient over

the entire supply network (Equation 4 in Experimental Proced-

ures), i.e., the aggregation of all individual Cis in varying timewin-

dows. A time window is an interval between two snapshots,

which can be 1 year, e.g., 2003–2004, 14 years, e.g., 2003–

2017, or any interval in between. C measures the stickiness of

the overall supply chain network over all possible time windows,

i.e., applied to varying time intervals between two snapshots.

Equations 1, 2, and 3 (Experimental Procedures) are steps to

calculate C.

These indices vary between zero (i.e., a complete reconfigura-

tion of trade relationships between the two snapshots) and one

(i.e., full stickiness, all trade relations observed remain identical).

Zero includes situations where the supply network has no link-

ages in one of the observed years. In large and complex net-

works, such as Brazil’s soy export supply chain, we hardly find

either one or zero at the whole network level, meaning that at

this level, some linkages are always maintained, and new link-

ages always appear.76,77,79 However, when looking at specific

network configurations around actors, we find zeros or ones.

From a network perspective, we decompose trade relations in

commodity supply chains in ‘‘linkages’’ and ‘‘flows,’’ corre-

sponding to the presence of a commercial relationship between

two partners, and the volume of commodities exchanged be-

tween them, respectively, over discrete periods. These two ap-

proaches provide complementary information, allowing analysis

of changes in the presence and intensity of trade relations and

verification of whether a linkage reconfiguration is related to an

increase or decrease in specific flows.

For example, an LH may trade slightly varying soy volumes

every year with the same set of exporters. The stickiness

measured on linkages will be 1 over these years, while indices

on flows will be slightly below 1, as the changes in volume imply

that some linkages are trading more or less soy than the year

before, thus changing the flow configuration. Note that these

stickiness metrics measure the absolute magnitude of changes

in network configuration, notwithstanding their direction (appear-

ance or disappearance of linkages, increases, or decreases in

flows). Although this information is partly independent, changes

in linkages and flows are strongly correlated (Figure S1). For

clarity, the main text presents only results on linkages. We repli-

cate all analyses in flows in the Supplemental Information.

These indices are scaled from 0 to 1 and are independent of

the size of the network, making it possible to compare indices

within groups, e.g., among traders. Although the different types

of supply chain relationships have a distinct nature and corre-

spond to groups of actors with a distinct agency, the scaling of

the indices also makes it possible to compare the values

observed across groups, e.g., comparing traders with LHs.

Here, we explore the six types of supply chain relationships pre-

sent in our Brazil’s soy export data: (A) logistics hubs (LHs) sup-

plying traders, (B) LHs supplying countries, (C) traders sourcing

from LHs, (D) traders supplying countries, (E) countries sourcing

from traders, and (F) countries sourcing from LHs (Figure 2). Yet,

we focus our discussion on traders in their sourcing relationships

with LHs and supplying relationships with countries. Other data-

sets might include other types of supply chain relationships,

such as retailers selling to consumers or farmers buying fertil-

izers from input suppliers.

The Stickiness of Brazil’s Soy Export Supply Chain

Observing the first dimension of the stickiness (i.e., persistence)

of different sets of actors in the Brazilian soy export supply chain

reveals that traders overall have relatively low stickiness. LHs

and import countries have somewhatmoderate stickiness levels.

However, each group is heterogeneous (Figure 3). The soy sup-

ply chain is highly concentrated, with 31 traders (of 1,709 in total)

accounting for 82% of the total soy traded. Traders with the

largest market shares have higher average stickiness (Figure 3,

t test, p = 9.107 3 10�13). A large group of small traders (1,678

companies) is comparatively non-sticky and represents 18% of

the total soy exported. A few LHs (n = 35) were the source of

62% of the total exported soy volume, while the 29 largest

consuming countries imported 97% of total soy in the analyzed

period. Both groups have higher average stickiness than the

average LHs (t test, p < 2.2 3 10�16) and countries (t test, p =

2.208 3 10�14) analyzed here (Figure 3).

We correlated the temporal average stickiness (TCi) with soy-

deforestation risk from Trase.18,29 ‘‘Soy deforestation risk (hect-

ares) is the soy deforestation allocated to the actors along the

supply chain in proportion to the volume of soy that they export
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from a given jurisdiction, relative to the total production of soy (by

all producers) in the same jurisdiction. Deforestation risk for a

given year of export is based on deforestation that occurred in

the previous five years, during which time the soy that is being

exported was planted and harvested.’’78

When observing the network of traders sourcing from LHs and

supplying countries (Figures 2A and 2B), we found that stickier

traders also exhibit higher soy-deforestation risk (r = 0.22 and

0.27; t test, p < 1.983 10�9 and p < 1.513 10�14, respectively).

This correlation suggests that traders who have been stably

sourcing from a set of LHs or supplying to a stable set of coun-

tries also present higher soy-deforestation risks. Moreover, the

stickiness measurements on these two types of supply chain re-

lationships, i.e., traders sourcing fromLH (Figure 2C) and supply-

ing countries (Figure 2D), are also strongly correlated (r = 0.95

and p < 0.001), indicating that traders who have stable relation-

ships with their suppliers also have stable relationships with their

customers. This association suggests a high potential for signal

transmission from consumers to producers in the supply chain,

including a signal demanding to reduce deforestation.

Testing the difference in the temporal average stickiness (TCi)

between ZDC signatory and non-signatory traders,18 we found

that ZDC traders are significantly stickier than non-ZDC, both

whenmeasuring their stickiness in sourcing from LHs (Figure 2C;

t test, p = 1.042 3 10�8) and in supplying countries (Figure 2D; t

test, p = 1.765 3 10�8).

Figure 2. The Six Types of Brazil’s Soy Supply Chain Relationships

Themeasurement of stickiness focuses on the set of linkages and the changes in their configurations around each actor in the network. The blue color denotes the

focal group of actors (i.e., the nodes fromwhose perspective the analysis is being done). The blue arrows denote the linkages of the supply chain being analyzed.

(A) Logistics hubs (LHs) supplying traders; (B) LHs supplying countries; (C) traders sourcing from LHs; (D) traders supplying countries; (E) countries sourcing from

traders; and (F) countries sourcing from LHs.
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A temporal profile of stickiness between consecutive snap-

shots also confirms that traders and LHs with large market

shares (Figures 4B1 and 4B2) are stickier than their respective

overall groups (Figures 4A1 and 4A2).

For most types of supply chain relationships, especially the

linkages between LHs and traders (Figures 2A and 2C), the in-

ter-annual stickiness increases over time. When comparing the

2003 snapshot directly with 2017, all relationships become less

sticky (Figures 4A1, 4A2, 4B1, and 4B2). Thus, even if supply

chain configurations appear relatively stable year to year, small

step-by-step reconfigurations over short time intervals lead to

major overall changes in the long term.

This difference in the measured time frame may reflect various

processes, including expansion into new frontiers, and new-

comers. Calculating the temporal correlation coefficient (C;

Equations 1, 2, 3, and 4 in Experimental Procedures) shows

that, when observing themean value of stickiness for all possible

time windows, the overall stickiness of the entire supply chain

network decreases the longer the time window is (Figure 5).

For example, the stickiness will be higher when comparing the

supply network over two consecutive years, such as 2003 versus

2004, in contrast with comparingmore temporally distant config-

urations, such as 2003 versus 2017.

The geographic analysis of the stickiness of LHs in their sup-

plying relationships with traders shows that certain LHs have

been supplying soy to exactly (TCi = 1, n = 13) or mostly the

same (0.76% TCi% 0.99, n = 75) set of traders over time (Fig-

ure 6). Showing the various levels of engagement between re-

gions of production and distribution and soy traders reveals

the potential land use accountability of traders operating in these

places. Some LHs in two important agricultural frontiers in

Brazil—Northern Mato Grosso and the ‘‘Matopiba’’ (Maranhão,

Tocantins, Piauı́, and Bahia) frontier in the Cerrado—present

high stickiness with traders, suggesting that impacts of soy pro-

duction and trade can be consistently associated with these

specific traders in those regions.

Stickiness Dimensions in Brazil’s Soy Exports

Here, we illustrate how the three dimensions of stickiness

(persistence, resistance, and recovery) manifest in relation

to shocks and other factors using exemplary cases in traders

(Figure 7). We use the stickiness of soy linkages (Ci), the tem-

poral average stickiness (TCi), and the stickiness measured

on the longest time window (the supply network configuration

for 2003 compared with 2017) (see Experimental Proced-

ures). Formally, attributing a causal relation to specific

factors requires further analyses beyond the scope of

this paper.

Bunge, the single largest soy trader in Brazil, had a persistent

configuration of soy linkages from LHs (Figure 7). In contrast with

Santa Rosa Agroindustrial and Agrenco, Bunge also appears to

have had a more resistant configuration to the various shocks

that occurred during 2008–2010, including the global financial

crisis and the Amazon Soy Moratorium (ASM), which all three

companies signed in 2006. Santa Rosa Agroindustrial had a

persistent pattern until 2008, and then experienced a profound

reconfiguration of its sourcing linkages, with a period of high

instability between 2008 and 2010, and then recovered a sticky

pattern from 2011 onward. Despite the collapse of Santa Rosa’s

linkages configuration in 2008–2010, the configuration of the first

snapshot (2003) and the last (2017) were quite similar (index,

~0.62) (Figure 7A2). This long-term similarity indicates that after

having been disrupted for several years, Santa Rosa Agroindus-

trial recovered a similar network of sourcing LHs to a greater

extent than Bunge. Agrenco, in contrast, exemplifies a non-

persistent pattern, with stable linkages configurations some-

times lasting for two consecutive years, but then strongly reor-

ganizing, and being unable to recover any stable sourcing

pattern after 2009.

A proper causal analysis to explain why different traders pre-

sent distinct patterns is beyond the scope of this paper. Never-

theless, these examples illustrate that small local traders like

Santa Rosa Agroindustrial are subject to particular circum-

stances that may affect the observed stickiness patterns. De-

pending on market circumstances, these small local traders

may venture into direct exports. However, they may also decide

to sell their stocks for other traders to export or for local demand,

thereby disappearing from the export registry in a given year.

Indeed, Santa Rosa appears with zero exports in 2009, leading

to the stickiness metric dropping to zero when comparing the

similarity of Santa Rosa’s supply network in 2008 with 2009. In

2010, Santa Rosa resumed exporting, so that this new network

configuration also produced a stickiness value of zero when

comparing 2009 with 2010. Then the 2010–2011 measurement

Figure 3. Overall Distribution of the First

Dimension of Stickiness (Persistence)

Measured on the configuration of commercial link-

ages (TCi, Equation 2 in Experimental Procedures).

Over the whole dataset (‘‘Overall’’), traders are the

least sticky group in the Brazilian soy supply chain.

‘‘Selected’’ includes only logistics hubs and traders

that commercialized at least 1% of the total soy

volume in any year after 2008 and countries that

imported at least 0.5% of the total soy volume in the

same period. These selected traders, logistics

hubs, and countries are stickier overall. (See the

equivalent on flows in Figure S2). The bars in the

boxplots represent quartiles. The horizontal bar in-

side the colored range indicates the median. The

upper and lower ranges indicate the 25% and 75%

quartiles, respectively. The upper and lower black

lines indicate the max and min values.
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goes up to 0.7, indicating that the supply network of 2011 was

around 70% similar to that in 2010.

DISCUSSION

Stickiness as a Conceptual and Methodological Tool

Our results reveal key insights into Brazilian soy supply chains:

stickiness is higher for large traders, and increases over time,

which may reflect the progressive consolidation of the relation-

ships between traders and specific regions of production

through investments in infrastructures or business relations.

Further, stickiness typically decreases when the time interval

observed becomes longer. Fromone year to the next, the config-

uration of the Brazilian soy network presents only small changes.

However, these changes accumulate over time so that within the

15 years covered by our assessment, the supply chain has sub-

stantially reconfigured, as observed for a pig supply chain in

Germany.77

Our results reflect three characteristics of Brazil’s soy supply

chain: (1) market concentration, including potential infrastructure

lock-in of large traders in some regions, e.g., through the owner-

ship of port terminals and export corridors; (2) the strategy of

large traders to diversify their sourcing regions tomitigate supply

risks, and therefore a tendency to have relatively high stickiness

given their ubiquity; (3) the existence of many small traders

(1,678 companies) that engage in intermittent trading and

brokerage, without strong geographic dependency, following

market circumstances and opportunities.

Our proposed metrics allow characterizing the whole

network, specific linkages, and flows, as well as the behavior

of actors; i.e., decision-making entities (companies and regions

of production, distribution, and consumption, representing the

aggregate of individual producers’ and consumers’ trade be-

haviors). These metrics can apply to different types of relations

across supply and value chains—i.e., material flows such as

soy volumes here, but also financial flows or others—to inves-

tigate the existence and changes in linkages configuration and

their intensity (e.g., volumes traded). Examples from the Brazil-

ian soy supply chain suggest that the three dimensions capture

the dynamics of trade relationships and can be approached

with our method.

Beyond our set of indices (Equations 1, 2, 3, 4, 5, and 6 in

Experimental Procedures), other metrics can be used to

measure the similarity of the network around specific

nodes over time or the frequency or persistence of specific

linkages. Our dataset on Brazilian soy has a fine granularity

(i.e., subnational production areas and distribution points, im-

porting and exporting companies), but the same approach

can also be applied over country-to-country data or other

levels of detail.

Further methodological research would help to refine the

indices and their information content, the measurement of

the different stickiness dimensions and quantitative thresh-

olds to characterize them, and specific procedures for supply

chains covering distinct products, scales, and types of flows.

Additional investigations are needed to formally define and

identify shocks and analyze their impacts on trade linkages

and flows.68 The stickiness concept can further our under-

standing of various processes across commodity supply or

value chains ranging from development,80 macroeconomics,

and political economy81 to supply chain management and

business strategies.82 Here, we focus on appraising the po-

tential effectiveness of supply chain ZDCs and other similar

interventions.15

Figure 4. Temporal Stickiness Profile in the First Dimension of Stickiness (Persistence)

Measured on the configuration of commercial linkages (Ci and Cm; Equations 1 and 3 in Experimental Procedures). In (A1) and (A2), LHs are stickier than other

actors’ group in both types of relationships. Nonetheless, in (B1) and (B2) the selected traders sourcing from LHs show higher stickiness than the overall group in

(A). (A2) and (B2) complement the temporal profiles by showing the temporal average (TCi; Equation 2) and the Ci calculated for the comparison directly between

2003 and 2017, instead of for each consecutive biannual snapshots compared. See the equivalent figure measured on flows in Figure S3. Also see a com-

plementary Figure S4 zooming in on the relationships of different categories of traders (overall, small, and large).

ll
OPEN ACCESS Article

106 One Earth 3, 100–115, July 24, 2020



Understanding Stickiness for Sustainability Governance

Analyzing stickiness in commodity trade can contribute to

improve territorial and supply chain governance for sustainabil-

ity, including reducing deforestation, carbon emissions, and

biodiversity loss.

First, understanding stickiness can contribute to explaining

and projecting the restructuring of trade flows under changing

governance contexts or other shocks.24 Past stickiness patterns

can inform onwhich trade relations aremore likely to persist over

time, be resistant to shocks, or recover from them. Changes in

deforestation regulations alter soy and cattle expansion and ex-

ports, but the mediating role of specific supply chain actors re-

mains unclear.24 Identifying areas and actors with low stickiness

can help to understand their instability under changing policy or

market conditions, as well as supply chains’, companies’, or re-

gions’ vulnerabilities to shocks such as newcomers or climatic

changes.

Second, there is a growing momentum of supply chain inter-

ventions, such as ZDCs, to improve the sustainability of land

use and other dimensions of supply chains.12,38 In 2006, Green-

peace launched a campaign blaming McDonald’s consumers in

Europe for causing deforestation in the Brazilian Amazon.13 In

response, soy companies and environmental NGOs established

the Amazon Soy Moratorium (ASM) to address this growing

awareness of corporate accountability for unsustainable com-

modity production and tackle reputational risks.13,16 Other

related initiatives ensued, including the New York Declaration

on Forests, the Amsterdam Declarations, Tropical Forests Alli-

ance 2020, and companies’ pledges.12 Assessments of the

effectiveness, coverage, and benefit to corporate actors of these

zero-deforestation initiatives15,19,83–85 rest on a poor under-

standing of how strongly actors are connected to production pla-

ces and how supply chain configurations are affected by these

initiatives. We hypothesize that the relations between stickiness

and supply chain governance are multiple. If supply chains are

not geographically sticky, these commitmentsmay be less effec-

tive, as traders will lack a sufficient engagement with producing

regions to influence changes in their suppliers. In the reverse di-

rection, supply chain interventions can also create, increase, or

decrease stickiness.

We hypothesize that the ASM may have consolidated the

export relationships between places with already deforested

available lands, signatory traders, and European countries.

However, it may have also created instability in other places by

creating market space for non-signatory traders supplying the

growing Chinese soy demand from municipalities where expan-

sion was still occurring. About 350,000 tons of soy were har-

vested in the 2016/2017 season in violation of the ASM,28 sug-

gesting that non-signatory companies entered this market and

bought this soy. We speculate that the entry of these non-signa-

tory companies decreased stickiness in these municipalities.

Consequently, the strength of actor-geography connections is

likely to have important implications for actors’ accountability.

Traders sourcing in spot markets with low stickiness may be

held more hardly accountable for the impacts associated with

soy production than actors with consistent sourcing patterns.

Further, stickiness may not only influence the effectiveness of

ZDCs and other interventions but also condition their emergence

and signing in the first place. Our results show that ZDC signa-

tories, for example, also have the largest market shares and

the highest stickiness scores for their sourcing places and sup-

plying countries. This higher stickiness may reflect not only the

investments and facilities installed in these places but also the

long-term trust relationships and the role of embeddedness49

in shaping social-economic relations. Traders with such em-

beddedness and long-term engagement may be in a favorable

position to sign and implement ZDCs.

Monitoring the stickiness and deforestation risk exposure of

each company over time18 allows for targeted efforts on specific

regions in the supply chain. Companies with non-sticky patterns

may require more robust monitoring and verification tools than

sticky companies sourcing consistently from the same locations.

In contrast, sticky actors may constitute stronger levers to influ-

ence their sourcing regions with more additionality in curbing

deforestation, not only in their direct suppliers.11,13–15,18

Stickiness may also affect the mechanisms through which in-

terventions are transmitted along supply chains: strategies of

sticky and non-sticky traders to achieve a ZDC may differ, with

different overall impacts on the sector. Non-sticky traders may

easily achieve targets related to their own embedded deforesta-

tion by shifting their sourcing to compliant suppliers. Neverthe-

less, this approach may have less effect on territorial deforesta-

tion overall, in contrast with sticky traders that have to steer

changes on the ground to achieve a commitment.27 These

different approaches may have distinct implications for socio-

economic development and the spatial distribution of ZDC

effectiveness.

Stickiness reflects stable long-term relations between actors.

We hypothesize that the level of stickiness may thus also relate

to and inform on the level of trust between regions of production

and distribution, traders, and consuming countries.50 Trust may

be crucial for the success of supply chain interventions, and

gaining insights on this level of trust may thus inform the sustain-

ability strategy to be implemented and the likelihood of its

Figure 5. Overall Stickiness (Persistence) of Brazil’s Export Soy Sup-

ply Chain

Calculated over all different configurations of comparisons between years

separated by increasing time intervals.
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success. Further works could explore these various hypotheses

empirically.

Third, by informing on how supply chains behave, adapt over

time, and react to shocks, analyzing stickiness can further our

understanding of deforestation leakage and other complex

land-use spillover dynamics stemming from territorial interven-

tions and other regulatory changes.27,28,86,87 The stickiness of

consolidated traders in already-cleared regions in the Amazon

may have facilitated their decision to sign the ASM agreement,

acknowledging that they could expand into the neighboring

Cerrado.84,85,88

Leakage across supply chains (e.g., deforestation being dis-

placed from soy to beef27,89) and regions (e.g., displacement of

deforestation from the Amazon to the Cerrado13,84) is likely to

follow the patterns of sticky relationships.25 Traders facing an

intervention that curbs deforestation and agricultural expansion

Figure 6. Spatial Distribution of Stickiness

(Persistence) of Traders to Sourcing Areas

A map with stickiness measured on soy flow

configuration displays similar patterns (Figure S5).

Municipalities in gray produce soy, but this soy is

bought by traders through one of the logistics hub

municipalities. Note that local soy transactions

destined for local consumption in poultry or pork

facilities are not captured by this dataset.

(e.g., in the Amazon) may seek room for

expansion in regions unaffected by the

intervention (e.g., in the Cerrado) where

they already have sticky relationships.

Stickiness analyses might have informed

on which Cerrado municipalities were

more likely to experience increased

soy deforestation after the ASM

implementation.84

Stickiness levels can also result from

anticipation behaviors. Companies can

enhance their fluidity by building new as-

sets in places they expect to remain unaf-

fected by interventions, or outsourcing lo-

gistics and storage services in locations

targeted by interventions. In ASM proced-

ures, soy purchased by indirect suppliers

in the Amazon, i.e., local cooperatives or

small grain warehouses, are not subject

to the verification procedures applied

when traders source directly from

farmers.90 Traders have thus an incentive

to become more fluid and outsource their

facilities, while possessing physical assets

in places targeted by interventions may

become a competitive hindrance.

Fourth, stickiness can inform on trade

dependency and market concentration.

At the country level, dependency theory

suggests that developing countries face

reinforcing feedback loops between the

creation of strong export linkages with

wealthy countries and the expansion of

land use with detrimental environmental impacts.91 The sticki-

ness concept and method can improve the understanding of

how agricultural supply chains and land use determine each

other. This reciprocal dynamic includes legacies of past invest-

ments, infrastructure decisions,23 corporate strategies to in-

crease market share, and positioning in distinct market

segments.92

A Research Agenda on Stickiness in Commodity Trade

Two key questions may constitute a research agenda for sticki-

ness in commodity supply chains, particularly concerning

sustainability.

First, how sticky are various trading relationships, and what

are the factors and mechanisms that explain variations in stick-

iness between specific actors and locations? These factors likely
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vary at different levels (e.g., company to company, or country to

county), and steps in the supply chain. The concept of territori-

ality, i.e., how global production networks are spatially

dispersed, can contribute to explaining the level of supply chain

stickiness, as clustered actors tend to have more rigid relation-

ships than dispersed ones.93

Producer-driven commodity chains—i.e., those in which

large transnational manufacturers or processors play the cen-

tral roles—are expected to have high barriers to entry for new

producers, such as the soy industry for new producers of soy

outputs such as oil and cake.36,59,60 These high barriers, due

to the need for appropriate capital and expertise, may lead pro-

ducer-driven chains to be relatively sticky, as downstream ac-

tors such as feed companies and food retailers depend on a

concentrated set of processors. In contrast, buyer-driven

chains, such as vegetables retailed by supermarkets, have

lower barriers to entry and may be less sticky. In this case,

large-branded supermarkets can easily change their suppliers

drawing from a dynamic pool of vegetable producers. New

buyers can also enter the market and compete for a pool of

producers by offering more advantageous purchasing

conditions.94

The governance structure of value chains—i.e., how authority

and power relationships, such as through market shares and

price-setting power, determine the allocation of benefits and re-

sources across chains—also influences the options and bargai-

ning power of actors and thus their stickiness.61 Social networks

and embeddedness95 also likely influence stickiness.

Geographic factors, including the availability of land for further

expansion, may influence the involvement of supply chain actors

with specific places. Producers’ stickiness can be tied to the

presence of infrastructures from one versus different companies,

or preferential contracts, while consumers’ stickiness depends

on their attachment to brands.37

Countries may shift sourcing across other countries while a

local trader may be tied to a place where it has a silo or other

infrastructure. Stickiness may also be influenced by policies

that increase traceability or compliance with specific sanitary

norms or preferences—such as the EU refusal of genetically

modified (GMO) crops—or provide preferential market ac-

cess.32,92 Over the long term, environmental and other policies

affect infrastructure development and production factors such

as labor force, which in turn determines land-use displacement

across geographies.23

Second, how does an actor’s stickiness influence patterns of

land use in the geographies where they engage, and more

broadly, the socio-environmental impacts of commodity produc-

tion? Further, how does stickiness interact with various gover-

nance interventions, i.e., territorial or jurisdictional interventions,

supply chain, or public policy interventions, aiming to manage

land use more sustainably, and does this influence their

effectiveness?

Formulating and testing more specific hypotheses relating to

the relationship between stickiness and land-use governance

can help to design more effective interventions. In the specific

context of ZDCs, we propose that (1) stickier companies are

more likely to implement ZDCs by requesting changes in their

suppliers’ practices as opposed to shifting their sourcing pat-

terns, and (2) interventions on stickier companies or territories

are less likely to result in leakage. Testing these hypotheses re-

quires further work beyond the scope of this study.

Conclusion

We presented the notion of stickiness to measure and charac-

terize the level of stability and rigidity of supply chain relations,

decomposed into the persistence, resistance, and recovery of

these relations. Metrics from network analysis can measure

these dimensions for both the presence of linkages and the in-

tensity of flows.

Understanding stickiness can inform policies and initiatives to

address deforestation, in particular, to assess the potential

effectiveness of supply chain ZDCs. If supply chains are not

geographically sticky, these commitments may be less effective,

and less likely to be signed, as companies may lack the capacity

to influence their suppliers downstream. This relationship be-

tween stickiness and ZDCs requires further investigation.

Analyzing stickiness revealed insights into the behavior of pro-

duction places and traders active in the Brazilian soy supply

chain. Brazilian soy traders with the largest market share and

with ZDCs exhibit stickier geographic sourcing patterns. Soy-

deforestation risk among traders is correlated with stickiness.

The linkages between production places and traders become

increasingly sticky over time. Specific regions, in particular cur-

rent agricultural and deforestation frontiers, have higher sticki-

ness. The cause-effect relationships behind these patterns

require further investigations.

Further research could improve the methodological tools for

empirically assessing the different dimensions of stickiness,

especially related to the identification of supply chain shocks

and their effects. These improvements can enhance our under-

standing of the factors that influence stickiness patterns, the

Figure 7. Temporal Stickiness (Persistence) Measured on Selected

Traders

Traders’ sourcing linkages from logistics hubs. See the same graphs with

measurements on trade flows in Figure S6. (A2) complements the temporal

profiles by showing the temporal average stickiness (TCi; Equation 2, Exper-

imental Procedures) and the Ci calculated for the direct comparison between

2003 and 2017, instead of for each subsequent biannual snapshot.
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impacts of supply chain dynamics, and the mediating role of ac-

tors on socio-environmental dimensions. Research on stickiness

can inform the development of solutions for curbing deforesta-

tion and promoting sustainable land use and supply chains.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the Lead Contact, Tiago Nogueira Pimenta

dos Reis (tiago.reis@uclouvain.be/tiagopimentadosreis@gmail.com).

Materials Availability

This study did not generate new unique materials.

Data and Code Availability

The datasets and code generated during this study are available at Zenodo re-

pository: https://doi.org/10.5281/zenodo.3901699.

Designing a Conceptual Framework for Stickiness

Several fields have explored how to describe the stability and rigidity of sup-

ply chain patterns and trade networks, and the processes that underpin

them. First, agricultural economics investigates stickiness in international

trade, showing, under the so-called ‘‘Armington assumption,’’ that in global

markets with free trade, agricultural products from one place are not fully

substitutable with products from another place, even after accounting for

price differences.25,30 The often-used gravity model explains the amount of

country-to-country flows as a function of economy sizes, i.e., gross domestic

product (GDP) and geographic distance.54,55 However, this literature says lit-

tle about geographic stickiness between places and actors, except for clus-

tering in manufacturing supply chains,58 and lacks explicit articulation of the

role of stickiness in sustainability governance of supply chains, particularly

for ZDCs.15 Second, research on GCCs,59 GVCs,60 and production networks

(GPNs)62 show how actors, including raw material producers, traders, and

retailers, create and maintain specific trade networks. This research remains

based on specific case studies, lacking the large datasets linking localized

production, supply chain actors, and consumption places that are necessary

to explore quantitatively how supply chain configurations react to various

changes in markets and policies.66 Third, studies on social-ecological resil-

ience and biosphere stewardship71,72 have analyzed how social-ecological

systems resist, adapt, transform, and recover from external shocks.96–98

They distinguish the two dimensions of resistance (i.e., the ability of a system

to withstand shocks by maintaining its functions) and recovery (i.e., the ability

of a system to bounce back to its previous state after being per-

turbed).68,98,99 In the next paragraphs, we explain in more detail how these

three streams of literature contribute to designing a conceptual framework

for stickiness.

Agricultural economics studies show that in global markets with free trade,

agricultural products from one place are not fully substitutable with products

from another place, even after accounting for price differences.31–33 Standard

econometric studies and economic models use empirically calibrated ‘‘Ar-

mington trade substitution elasticities.’’30 These studies account for the differ-

entiation of products based on production place, and for the fact that price

shocks occurring in one country do not spread homogenously in the global

market, but predominantly affect the key trade partners of that

country.30,34,73,75

For example, a drought in a few specific municipalities of Brazil, as a soy ex-

porting country, will affect local producers and traders by impairing their ca-

pacity to deliver future contracts. As a result, this local shortage of supply

may increase regional soy prices, but this will not affect global markets, as

most traders can change sourcing to other regions not affected by this local

shock. In global commodities, for global prices to be affected, there need to

be higher scale shocks. In this sense, a local price shock caused by local

climate variability will differentiate soy according to its production location

becausemunicipalities that did not suffer from this drought will havemore sup-

ply and lower prices to feed global demand.

For supply chains at firms level, the economic literature identifies some fac-

tors influencing stickiness, mainly input and output specificity.34,35 Input and

output specificity refers to the properties and characteristics of materials

used in manufacturing and the resulting products that differentiate them. For

example, soy farmers who use specific breeds of GMO seeds are highly sticky

to the companies that supply the specific set of agrochemicals that function

with those seeds. By acquiring certain types of GMO seeds, a farmer may

establish an enduring commercial relationship with the suppliers of an

adequate and specific set of inputs.36,92

The actor’s relative position in the supply chain, which is dependent on the

elasticity of demand faced by the consumer-facing company,11,37,38 also influ-

ences stickiness because of the embeddedness nature of some commodities

in food systems.11 For example, soy is used formultiple purposes that are opa-

que to consumers, such as animal feed and biofuel; only a small fraction of soy

goes to direct human consumption. This opacity means that it is relatively easy

for intermediate companies, such as traders and processors, to be non-sticky

with their suppliers. These intermediate companies have a distant relative sup-

ply chain position from end consumers. This distance implies they can shift

sourcing places from time to time, as they do not receive direct consumer

pressure for accountability.

Geographic proximity influences the country-to-country trade pat-

terns25,39,42 significantly. However, the literature also shows other more qual-

itative factors influencing international trade, such as ethnic networks,40 colo-

nial linkages and common language,41,42 piracy,43 governance regimes,44

institutional quality and differences between countries,45 and the countries’

capacity to enforce contracts.46 The social economy concept of embedded-

ness47,48 complements our review of stickiness by acknowledging the social

structure and trust of interfirm networks and commercial relationships.49 Un-

derstanding the embeddedness of social relations50 in supply chain economic

and geographic relationships is crucial to advance the stickiness research

agenda.

Lock-in effects are equally important factors of stickiness in supply chains,

mainly technological,51 the fixing of relative preferences over time,52 social

dependence, and investments.53 The gravity model explains the amount of

country-to-country flows as a function of economy sizes, i.e., GDP, and

geographic distance,54,55which can also partially explain stickiness or, in other

words, why some country-to-country flows persist over time. Furthermore, the

Melitz model56 suggests that stickiness depends on a country’s exposure to

international trade, where more productive firms would access foreign mar-

kets, thus havingmore volatile supply chains. In contrast, less productive firms

would be sticky to domestic consumers. Varying levels of trade openness

would cause different supply chain responses and more or less volatility in

sourcing and supplying patterns.57

These economic studies focus on providing robust estimates of trade sub-

stitution elasticities for different commodities, and on explaining stickiness in

interfirm and country-to-country trade. Nonetheless, they say little about

geographic stickiness between places and actors, except for clustering in

manufacturing supply chains.58 This literature also lacks explicit articulation

of the role of stickiness in sustainability governance of supply chains, particu-

larly for ZDCs.15

Research on GCCs59 and GVCs60 provides a complementary perspective.

They move beyond structural country-to-country relations and show that

various actors such as raw material producers, traders, processors, and re-

tailers play a role in creating and maintaining specific trade networks. The

notion of GPNs62 highlights that companies and non-state actors exercise po-

wer and agency to shape the legal, governance, and policy frameworks and

contexts in which they operate.61–64 Most quantitative research on supply

chain configurations investigates structural factors at the country-to-country

level.65 As far as we know, research on GCCs, GVCs, and GPNs remains

based on specific case studies. It lacks the large datasets linking localized pro-

duction, supply chain actors, and consumption locations that are necessary to

explore quantitatively how supply chain network configurations react to

various changes in markets and policies.66

Here, we bridge these theoretical and empirical approaches by analyzing

supply chains as a network.69,70We extend the notion of stickiness formulated

in economics through the analysis of supply chains as proposed in GCC, GVC,

and GPN research. We consider stickiness as a moderating factor of the exis-

tence, and the potential effectiveness, of supply chain sustainability initia-

tives,15 particularly ZDCs. The notion of resilience in social-ecological systems

and biosphere stewardship71,72 inspires us to define the dimensions or
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characteristics of stickiness, namely resistance and recovery. Extensive in-

quiry on network approaches22,68 and in supply chains74 is also crucial for

our stickiness approach. Nonetheless, here we do not aim to characterize all

the aspects of resilience of production, consumption locations, and networks,

as well as of actors in the supply chains, and the capacity of these actors to

adapt and transform. We simply aim to provide a concept and methodological

approach to initiate those types of enquiry.

Assessing Stickiness in the Brazilian Soy Supply Chain

Network analyses are applied to various sustainability issues, including social-

ecological, biological, food webs,68 supply chain,100 land acquisitions,101 and

virtual water trade.102 In many cases, they aim to describe and understand the

persistence and reconfigurations of these networks. These studies offer inspi-

rations for our methodology for characterizing trade stickiness.

The Brazilian soy trading data from Trase version 2.3 (Supplemental Exper-

imental Procedures, Data and Methods) includes transactions of soy exported

as raw beans, oil, meal, or cake.29 We assembled this dataset as a network

linking LHs, traders, and countries of consumption. We did not measure stick-

iness on all soy-producing municipalities. The allocation of soy flows from the

logistic hubs (LHs) to the municipalities of production in the Trase data is the

result of linear programming. This methodmay create artifacts in the measure-

ments of the inter-annual stability of the network configuration at the munici-

pality level.78 LH-level data rely directly on official trade records and are repre-

sentative of a set of soy farms within the municipal boundaries in which they

are located, but also for neighboring municipalities, as these LHs gather soy

produced in a surrounding region with viable logistic connectivity. We also

clarify that we do not consider trade linkages with local feed companies and

processors that supply soy for Brazilian domestic consumption. All soy

consumed internally is treated as a single node called ‘‘domestic consump-

tion’’ in the LHs and traders network levels, and as ‘‘Brazil’’ at the country desti-

nation network level.

We transformed the raw data (in the format of edges lists) into adjacency

matrices. Each aggregate year of trade data between 2003 and 2017 became

one adjacency matrix, representing one snapshot of the network. We call each

year’s aggregate transaction data a snapshot because our network comprises

15 snapshots or annual aggregate transaction data. Each stickiness measure-

ment implies comparing two snapshots. In one set of adjacency matrices, we

replaced entries by 1, representing the existence of a linkage between two

adjacent nodes, and 0 when no link existed, thus creating an unweighted ad-

jacency matrix (or binary interaction matrix). We used this to measure sticki-

ness on trade linkages. All measurements presented here in the main text

use this unweighted adjacency matrix.

In the second set of matrices, we maintained the entries with the original

values representing the volumes of soy traded. With this, we measured stick-

iness on trade flows. The measurements on flows that are equivalent to those

on linkages presented here are shown in the Supplemental Information. Both

measurements, on soy trade linkages and flows, are highly correlated. They

are complementary indicators. While the measurements on linkages allow us

to identify overall changes in the configurations of commercial relationships,

the measurements on flows allow us to qualify these changes by indicating

whether the configuration of volumes traded through each linkage increased

or decreased.

For stickiness in trade linkages (unweighted networks), we used the tempo-

ral correlation coefficient (C)76,103 and its intermediary steps for directed, tem-

poral, and unweighted networks (as adapted by B€uttner et al.104 and Pigott and

Herrera105). These intermediary steps are the topological overlap (Ci), the tem-

poral average topological overlap (TCi), and the graph average topological

overlap (Cm; Equations 1, 2, 3, and 4). Cm is the average topological overlap,

calculated not over time as TCi, but over groups of nodes. It is a necessary step

to see the overall stickiness across groups and to calculate C. For stickiness in

trade flows (weighted networks), we adapted the topological overlap (Ci) to

analyze directed, temporal, and weighted networks, transforming it into

what we call weighted persistence of trade flows (WPi) and the temporal

average weighted persistence (TWPi; Equations 5 and 6).

Metrics Used for Stickiness in Linkages

The temporal correlation coefficient and its intermediary steps were first de-

signed as metrics for undirected and unweighted networks. Further adjust-

ment corrected and adapted the metric for directed networks.77,104,105 The

temporal correlation coefficient ‘‘measures the overall average probability

for an edge to persist across two consecutive snapshots.’’76,77,103 The topo-

logical overlap (Ci) of the surrounding links around a node in two time points

is the first step tomeasure the temporal correlation coefficient (C) of a network.

The Ci allows us to quantify the temporal changes in the configuration of

trading linkages of an actor in the supply chain.

We present the Ci equation below, where Ci is the topological overlap76 of

links around node i. tm is the first snapshot of the temporal network, for

example, the configuration of trade linkages of the soy supply chain in

2003. tm+1 is the second snapshot, in the same example, the configuration

of trade linkages in 2004, the subsequent year with available data. We

used the same metric to compare non-successive years, i.e., comparing

the network configuration in 2003 with that of 2017. aij is a value (1 or 0) in

the adjacency matrix representing the network. With the Ci (Equation 1),

we can observe and measure temporal changes in two snapshots with the

selected time interval, in the trading relationships around any specific actor

in the supply chain.

Ci
�

tm;
tm+ 1

�

=

P

jaijðtmÞaijðtm+ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h

P

jaijðtmÞ
ih

P

jaijðtm+ 1Þ
i

r : (Equation 1)

The Ci in biannual snapshots allows the changes in the trade linkages

configuration to be observed over two subsequent years around each node,

e.g., 2003–2004, 2004–2005, ., 2016–2017. Based on this, we then

computed the temporal average topological overlap77 of the nodes (TCi, Equa-

tion 2) for all snapshots, whereM is the total number of considered snapshots.

In our study, the maximum snapshots we can have is 15, each year from 2003

to 2017.

TCi =
1

M� 1

X

M�1

m=1

Ciðtm; tm+ 1Þ: (Equation 2)

In practical terms, Equation 1 is calculated over two snapshots that may be

successive years (e.g., 2003–2004) or non-successive years (e.g., 2003–2017),

and Equation 2 is the mean of several Cis over time. Equation 2 shows the

average variation in stickiness for every node in the complete length of the

analyzed period and considering all biannual changes in between. With this

Ci temporal average (TCi), we can see the average changes in the trading re-

lationships around any specific actor or region over a longer period, acknowl-

edging several or all subsequent snapshots in between.

In the third step, we grouped the trade relationships in six types: logistics

hubs (LHs) supplying (A) traders and (B) countries; (C) traders sourcing from

LHs, and (D) supplying countries; (E) countries sourcing from traders, and (F)

from LHs (Figure 2). We then calculated the mean of the biannual Cis for each

type of relationship. Having the Cis of nodes, we also calculated the average

topological overlap of the graph (entire supply network)104 for two consecu-

tive snapshots (Cm, Equation 3). The Cm is different from Ci temporal

average because TCi focuses on the trade linkages configuration around

each node, while Cm describes the changes in the whole network configura-

tion. The Cm is an intermediary step to get to the temporal correlation coef-

ficient (C). Therefore, we did not present the results here. The equation

used is

Cm =

1

max½AðtmÞ;Aðtm+ 1Þ�

X

N

i = 1

Ciðtm; tm+ 1Þ: (Equation 3)

In this equation, max[A(tm),A(tm+1)] denotes themaximum number of active

nodes of the graph at tm and tm+1. A node i is called ‘‘active’’ at time tm if it has

an edge with any other node.77 This equation was presented by B€uttner

et al.104 and Pigott and Herrera,105 modifying Nicosia et al. s76 equation to

acknowledge only active nodes in the calculation rather than all nodes,

i.e., even inactive nodes that did not trade anything in the two snapshots

considered. We subset the network to compute Cm for specific groups of

edges or, in our case, trade relationships, as described above.

Finally, the temporal correlation coefficient (C) (Equation 4) measures the

overall average probability of an edge to persist between two consecutive
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snapshots.76,77,103 It is the fourth step after computing Ci andCm.M is the total

number of considered snapshots. C is calculated as follows:

C =

1

M� 1

X

M�1

m= 1

Cm: (Equation 4)

The temporal correlation coefficient (Equation 4) summarizes the Cms,

which we grouped by type of supply chain relationship, to demonstrate how

much the trade configuration changes overall with the length of the time frame

observed.

All these four metrics generate values ranging from 0 to 1, 0 being a com-

plete change and 1 a complete maintenance of the trade configuration. As

an illustration, if one actor in the supply chain displays Ci or TCi = 1, it means

that this actor kept precisely the same trade linkages configuration throughout

the period assessed. On the contrary, if the value is 0, the trade linkage config-

uration changed utterly. Any value in between implies some degree of recon-

figuration. Looking at Cm and C, 1 means that the whole trade network re-

mained completely unchanged over the assessed period, while 0 means a

complete change. As can be expected, the longer the time interval, the

more likely the network is to change, and therefore the less sticky it appears

(Figure 4). B€uttner et al.77 found a slightly different trend in their pork supply

chain analysis, as C increases sharply in the initial increments of the time

frame, and then starts to fall slowly as time frame increases. Their time steps

were very short (days) compared with ours, so their supply chain appears

much more volatile in comparison with our soy supply chain, which is less vol-

atile and measured in years.

Metrics Used for Stickiness in Flows

Despite the robustness of C and its sequential steps to measure stickiness in

trade relationships, one primary limitation of this metric is its inability to ac-

count for the changes in volumes traded, as it was designed for unweighted

networks (binary set of linkages). The Ci is calculated over a list of binary edges

or pairs of adjacency matrices, where nodes are either connected by a trade

relationship (1) or not (0). For our stickiness analysis of commodity trade, it is

also important to gauge the variations in flows, i.e., the volumes of product

traded in tons over the years through the linkages. Therefore, we devised an

additional index modifying the Ci and C steps. The weighted persistence index

(WPi) is the ratio between the absolute changes in the trade flows of a node i

and the total volume of soy produced or distributed (if the node is a logistic

hub), traded (if it is a trader), or imported (if it is a country) by this node i in

the observed time window. The same interpretation of Ci applies to theWPi in-

dex, i.e., an actor having WPi = 1 reveals that, overall, its inflows or outflows of

commodities remained unchanged over the observed period, whereas 0 indi-

cates a complete change in flows. We calculated the weighted persistence

(WPi, own formulation) as

WPi
�

tm;
tm+ 1

�

=1�

P

j

�

�aijðtmÞ � aijðtm+ 1Þ
�

�

P

jaijðtmÞ+ aijðtjm+ 1Þ
; (Equation 5)

TWPi =
1

M� 1

X

M�1

m=1

WPiðtm; tm+1Þ: (Equation 6)

With these two equations, we demonstrate a way to measure stickiness and

its three dimensions in commodity trading. Other metrics and approaches

could be used. TheWPi is only applicable to edges or flows aggregated by no-

des or by types of trading relationships.

Measuring the Three Dimensions of Stickiness

Based on these indices, we explored the three dimensions of stickiness empir-

ically, using the soy data, through the following questions (Figure 7):

Persistence

Which actors and locations have trade linkages and flows that are persistent

over time? To answer this, we can look at trade linkages and flows with Ci,

TCi, WPi, and TWPi close to 1. Those who kept biannual Cis and WPis at

high values over the whole observed period are the most persistent. Actors

and places that have values for these metrics closer to 0 have low persistence

for the period considered.

Resistance

Which actors and locations have trade linkages and flows that are resistant

over time? To answer this, we need to identify a potential or known shock,

which can, among other things, be a drought, a new trade policy, a ban or mor-

atorium, a sudden increase or decrease in global demand. Once we have iden-

tified a shock, we look at trade linkages and flows that are subject to this shock

and observe how their persistence (as measured by Ci for linkages and byWPi

for flows) performed during the shock period. The trade linkages and flows that

maintained Cis andWPis, respectively, at values that are high and similar to the

period before the shock can be characterized as resistant. Those who experi-

ence a substantial change are less resistant, and thosewho break linkages and

flows and experience a sudden drop in their indices are non-resistant. Note

that proper attribution of the changes in network configuration to the identified

shocks requires applying appropriate causal inference approaches that we did

not do here (Figure 7).

Recovery and Reconfiguration

Which actors and locations have trade linkages and flows that recover and re-

configure a stable situation over time? For this question, we look at linkages

and flows that are affected by a shock, i.e., show decreasingCis andWPis dur-

ing the shock period, but which afterward reconfigured their connections and

flows in a way that they returned to a similar trade configuration as before the

shock. Here, we make two subdivisions. The first entails the recovery toward

the same previous stable configuration, i.e., after breaking linkages and flows,

they recover to the same old partners and stabilize. The second entails link-

ages and flows that recover, but in a new configuration, i.e., they create new

linkages with new partners and then maintain this stable new configuration.

Here, we did not analyze causal explanations of this dimension, only observed

it empirically (Figure 7).

These three dimensions can be illustrated by first identifying a shock and

how the Cis and WPis drop in the period after the shock. If it recovers during

subsequent snapshots, it means the linkages and flows were re-established

in a more stable configuration. If we increase the analyzed time frame, for

example, instead of 2007–2008 we look at Cis and WPis for 2007–2012 and

see unchanged high Cis andWPis, it means that not only were the supply chain

actors able to re-establish stable relations but these relations were similar to

those prior to the shock; i.e., that the network restored to its previous config-

uration. In contrast, if Cis and WPis for 2007–2012 are low, it means that over

this longer period, they changed the configuration significantly, so the network

has reconfigured.

It is essential to highlight that here we do not define numeric boundaries or

thresholds to determine when the stickiness of a trade linkage or flow is resis-

tant or recovering, or not. So far, this is done simply in terms of comparison

with previous patterns. In other words, if the stickiness index of a specific

node varies between, e.g., 0.7 and 0.9 for a period, then it drops to 0.1 in a

biannual timestamp, to go up again back to the 0.7 and 0.9 range, we can point

out its recovery. More empirical analyses and stickiness observations are

needed so that we can start considering the establishment of numeric bound-

aries and thresholds for each dimension.
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