6,719 research outputs found

    Realtime magnetic field sensing and imaging using a single spin in diamond

    Full text link
    The Zeeman splitting of a localized single spin can be used to construct a magnetometer allowing high precision measurements of magnetic fields with almost atomic spatial resolution. While sub-{\mu}T sensitivity can in principle be obtained using pulsed techniques and long measurement times, a fast and easy-to-use method without laborious data post-processing is desirable for a scanning-probe approach with high spatial resolution. In order to measure the resonance frequency in realtime, we applied a field-frequency lock to the continuous wave ODMR signal of a single electron spin in a nanodiamond. In our experiment, we achieved a sampling rate of up to 100 readings per second with a sensitivity of 6 {\mu}T/Hz\sqrt{Hz}. Using this method we have imaged the microscopic field distribution around a magnetic wire. Images with \sim 30 {\mu}T resolution and 4096 sub-micron sized pixels were acquired in 10 minutes. By measuring the field response of multiple spins on the same object we were able to partly reconstruct the orientation of the field

    Detecting differential usage of exons from RNA-Seq data

    Get PDF
    RNA-Seq is a powerful tool for the study of alternative splicing and other forms of alternative isoform expression. Understanding the regulation of these processes requires comparisons between treatments, tissues or conditions. For the analysis of such experiments, we present _DEXSeq_, a statistical method to test for differential exon usage in RNA-Seq data. _DEXSeq_ employs generalized linear models and offers good detection power and reliable control of false discoveries by taking biological variation into account. An implementation is available as an R/Bioconductor package

    Modular Koszul duality

    Get PDF
    We prove an analogue of Koszul duality for category O\mathcal{O} of a reductive group GG in positive characteristic \ell larger than 1 plus the number of roots of GG. However there are no Koszul rings, and we do not prove an analogue of the Kazhdan--Lusztig conjectures in this context. The main technical result is the formality of the dg-algebra of extensions of parity sheaves on the flag variety if the characteristic of the coefficients is at least the number of roots of GG plus 2.Comment: 62 pages; image displays best in pd

    Gap formation in helical edge states with magnetic impurities

    Full text link
    Helical edge states appear at the surface of two dimensional topological insulators and are characterized by spin up traveling in one direction and the spin down traveling in the opposite direction. Such states are protected by time reversal symmetry and no backscattering due to scalar impurities can occur. However, magnetic impurities break time reversal symmetry and lead to backscattering. Often their presence is unintentional, but in some cases they are introduced into the sample to open up gaps in the spectrum. We investigate the influence of random impurities on helical edge states, specifically how the gap behaves in the realistic case of impurities having both a magnetic and a scalar component. It turns out that for a fixed magnetic contribution the gap closes when either the scalar component, or Fermi velocity is increased. We compare diagrammatic techniques in the self-consistent Born approximation to numerical calculations which yields good agreement. For experimentally relevant parameters we find that even moderate scalar components can be quite detrimental for the gap formation.Comment: 6 pages, 6 figure

    Prioritizing Offshore Vendor Selection Criteria for the North American Geospatial Industry

    Get PDF
    The U.S. market for geospatial services totaled US $2.2 billion in 2010, representing 50% of the global market. Data-processing firms subcontract labor-intensive portions of data services to offshore providers in South and East Asia and Eastern Europe. In general, half of all offshore contracts fail within the first 5 years because one or more parties consider the relationship unsuccessful. Despite the high failure rates, no study has examined the offshore vendor selection process in the geospatial industry. The purpose of this study was to determine the list of key offshore vendor selection criteria and the efficacy of the analytic hierarchy process (AHP) for ranking the criteria that North American geospatial companies consider in the offshore vendor selection process. After the selection of the initial list of factors from the literature and their validation in a pilot study, a final survey instrument was developed and administered to 15 subject matter experts (SMEs) in North America. The SMEs expressed their preferences for one criterion over another by pairwise comparisons, which served as input to the AHP procedure. The results showed that the quality of deliverables was the top ranked (out of 26) factors, instead of the price, which ranked third. Similarly, SMEs considered social and environmental consciousness on the vendor side as irrelevant. More importantly, the findings indicated that the structured AHP process provides a useful and effective methodology whose application may considerably improve the quality of the overall vendor selection process. Last, improved and stabilized business relationships leading to predictable budgets might catalyze social change, supporting stable employment. Consumers could benefit from derivative improvements in product quality and pricing
    corecore