3,844 research outputs found
Uncertainty in climate change impacts on basin-scale freshwater resources – preface to the special issue: the QUEST-GSI methodology and synthesis of results
This paper presents a preface to this Special Issue on the results of the QUEST-GSI (Global Scale Impacts) project on climate change impacts on catchment-scale water resources. A detailed description of the unified methodology, subsequently used in all studies in this issue, is provided. The project method involved running simulations of catchment-scale hydrology using a unified set of past and future climate scenarios, to enable a consistent analysis of the climate impacts around the globe. These scenarios include "policy-relevant" prescribed warming scenarios. This is followed by a synthesis of the key findings. Overall, the studies indicate that in most basins the models project substantial changes to river flow, beyond that observed in the historical record, but that in many cases there is considerable uncertainty in the magnitude and sign of the projected changes. The implications of this for adaptation activities are discussed
Viscerofugal neurons recorded from guinea-pig colonic nerves after organ culture
This is the accepted version of the following article: [Hibberd, T. J., Zagorodnyuk, V. P., Spencer, N. J. and Brookes, S. J. H. (2012), Viscerofugal neurons recorded from guinea-pig colonic nerves after organ culture. Neurogastroenterology & Motility, 24: 1041–e548], which has been published in final form at [http://dx.doi.org/10.1111/j.1365-2982.2012.01979.x]. In addition, authors may also transmit, print and share copies with colleagues, provided that there is no systematic distribution of the submitted version, e.g. posting on a listserve, network or automated delivery.Background Enteric viscerofugal neurons provide cholinergic synaptic inputs to prevertebral sympathetic neurons, forming reflex circuits that control motility and secretion. Extracellular recordings of identified viscerofugal neurons have not been reported. Methods Preparations of guinea pig distal colon were maintained in organotypic culture for 4-6 days (n = 12), before biotinamide tracing, immunohistochemistry, or extracellular electrophysiological recordings from colonic nerves. Key Results After 4-6 days in organ culture, calcitonin gene-related peptide and tyrosine hydroxylase immunoreactivity in enteric ganglia was depleted, and capsaicin-induced firing (0.4 micromol L-1) was not detected, indicating that extrinsic sympathetic and sensory axons degenerate in organ culture. Neuroanatomical tracing of colonic nerves revealed that viscerofugal neurons persist and increase as a proportion of surviving axons. Extracellular recordings of colonic nerves revealed ongoing action potentials. Interestingly, synchronous bursts of action potentials were seen in 10 of 12 preparations; bursts were abolished by hexamethonium, which also reduced firing rate (400 micromol L-1, P < 0.01, n = 7). DMPP (1,1-dimethyl-4-phenylpiperazinium; 10-4 mol L-1) evoked prolonged action potential discharge. Increased firing preceded both spontaneous and stretch-evoked contractions (X2 = 11.8, df = 1, P < 0.001). Firing was also modestly increased during distensions that did not evoke reflex contractions. All single units (11/11) responded to von Frey hairs (100-300 mg) in hexamethonium or Ca2+-free solution. Conclusions & Inferences Action potentials recorded from colonic nerves in organ cultured preparations originated from viscerofugal neurons. They receive nicotinic input, which coordinates ongoing burst firing. Large bursts preceded spontaneous and reflex-evoked contractions, suggesting their synaptic inputs may arise from enteric circuitry that also drives motility. Viscerofugal neurons were directly mechanosensitive to focal compression by von Frey hairs.Australian National Health & Medical Research Counci
Existence of immersed spheres minimizing curvature functionals in compact 3-manifolds
We study curvature functionals for immersed 2-spheres in a compact,
three-dimensional Riemannian manifold M. Under the assumption that the
sectional curvature of M is strictly positive, we prove the existence of a
smoothly immersed sphere minimizing the L^{2} integral of the second
fundamental form. Assuming instead that the sectional curvature is less than or
equal to 2, and that there exists a point in M with scalar curvature bigger
than 6, we obtain a smooth 2-sphere minimizing the integral of 1/4|H|^{2} +1,
where H is the mean curvature vector
Neurochemical characterization of extrinsic nerves in myenteric ganglia of the guinea pig distal colon
"This is the peer reviewed version of the following article: [Chen, B. N., Sharrad, D. F., Hibberd, T. J., Zagorodnyuk, V. P., Costa, M. and Brookes, S. J.H. (2015), Neurochemical characterization of extrinsic nerves in myenteric ganglia of the guinea pig distal colon. J. Comp. Neurol., 523: 742–756. doi: 10.1002/cne.23704], which has been published in final form at [http://dx.doi.org/10.1002/cne.23704]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms"Extrinsic nerves to the gut influence the absorption of water and electrolytes and expulsion of waste contents, largely via regulation of enteric neural circuits; they also contribute to the control of blood flow. The distal colon is innervated by extrinsic sympathetic and parasympathetic efferent and spinal afferent neurons, via axons in colonic nerve trunks. In the present study, biotinamide tracing of colonic nerves was combined with immunohistochemical labeling for markers of sympathetic, parasympathetic and spinal afferent neurons to quantify their relative contribution to the extrinsic innervation. Calcitonin gene-related peptide, vesicular acetylcholine transporter and tyrosine hydroxylase, which selectively label spinal afferent, parasympathetic and sympathetic axons, respectively, were detected immunohistochemically in 1 ± 0.5% (n = 7), 15 ± 4.7% (n = 6) and 24 ± 4% (n = 7) of biotinamide-labeled extrinsic axons in myenteric ganglia. Immunoreactivity for vasoactive intestinal polypeptide, nitric oxide synthase, somatostatin, vesicular glutamate transporters 1 and 2 accounted for a combined maximum of 14% of biotinamide-labeled axons in myenteric ganglia. Thus, a maximum of 53% of biotinamide-labeled extrinsic axons in myenteric ganglia were labeled by antisera to one of these eight markers. Viscerofugal neurons were also labeled by biotinamide, and shown to have distinct morphologies and spatial distributions that correlated closely with their immunoreactivity for nitric oxide synthase and choline acetyltransferase. As reported for the rectum, nearly half of all extrinsic nerve fibers to the distal colon lack the key immunohistochemical markers commonly used for their identification. Their abundance may therefore have been significantly underestimated in previous immunohistochemical studies
A cross-sectional study of the development of volitional control of spatial attention in children with chromosome 22q11.2 deletion syndrome
<p>Abstract</p> <p>Background</p> <p>Chromosome 22q11.2 deletion syndrome (22q11.2DS) results from a 1.5- to 3-megabase deletion on the long arm of chromosome 22 and occurs in approximately 1 in 4000 live births. Previous studies indicate that children with 22q11.2DS are impaired on tasks involving spatial attention. However, the degree to which these impairments are due to volitionally generated (endogenous) or reflexive (exogenous) orienting of attention is unclear. Additionally, the efficacy of these component attention processes throughout child development in 22q11.2DS has yet to be examined.</p> <p>Methods</p> <p>Here we compared the performance of a wide age range (7 to 14 years) of children with 22q11.2DS to typically developing (TD) children on a comprehensive visual cueing paradigm to dissociate the contributions of endogenous and exogenous attentional impairments. Paired and two-sample t-tests were used to compare outcome measures within a group or between groups. Additionally, repeated measures regression models were fit to the data in order to examine effects of age on performance.</p> <p>Results</p> <p>We found that children with 22q11.2DS were impaired on a cueing task with an endogenous cue, but not on the same task with an exogenous cue. Additionally, it was younger children exclusively who were impaired on endogenous cueing when compared to age-matched TD children. Older children with 22q11.2DS performed comparably to age-matched TD peers on the endogenous cueing task.</p> <p>Conclusions</p> <p>These results suggest that endogenous but not exogenous orienting of attention is selectively impaired in children with 22q11.2DS. Additionally, the age effect on cueing in children with 22q11.2DS suggests a possible altered developmental trajectory of endogenous cueing.</p
Altered structural brain connectome in young adult fragile X premutation carriers
Fragile X premutation carriers (fXPC) are characterized by 55-200 CGG trinucleotide repeats in the 5′ untranslated region on the Xq27.3 site of the X chromosome. Clinically, they are associated with the fragile X-Associated Tremor/Ataxia Syndrome, a late-onset neurodegenerative disorder with diffuse white matter neuropathology. Here, we conducted first-ever graph theoretical network analyses in fXPCs using 30-direction diffusion-weighted magnetic resonance images acquired from 42 healthy controls aged 18-44 years (HC; 22 male and 20 female) and 46 fXPCs (16 male and 30 female). Globally, we found no differences between the fXPCs and HCs within each gender for all global graph theoretical measures. In male fXPCs, global efficiency was significantly negatively associated with the number of CGG repeats. For nodal measures, significant group differences were found between male fXPCs and male HCs in the right fusiform and the right ventral diencephalon (for nodal efficiency), and in the left hippocampus [for nodal clustering coefficient (CC)]. In female fXPCs, CC in the left superior parietal cortex correlated with counting performance in an enumeration task. © 2014 Wiley Periodicals, Inc
The Milliarcsecond Structure of Radio Galaxies and Quasars
Hybrid maps of the nuclei of radio galaxies and quasars show a variety of morphologies. Among compact sources, two structures are common: an asymmetric, “core-jet” morphology (eg, 3C 273), and an “equal double” morphology with two separated, similar components (eg, CTD 93). The nuclei of extended, double radio galaxies generally have a core-jet morphology with the jet directed toward one of the outer components
Stellar Disk Truncations: Where do we stand ?
In the light of several recent developments we revisit the phenomenon of
galactic stellar disk truncations. Even 25 years since the first paper on outer
breaks in the radial light profiles of spiral galaxies, their origin is still
unclear. The two most promising explanations are that these 'outer edges'
either trace the maximum angular momentum during the galaxy formation epoch, or
are associated with global star formation thresholds. Depending on their true
physical nature, these outer edges may represent an improved size
characteristic (e.g., as compared to D_25) and might contain fossil evidence
imprinted by the galaxy formation and evolutionary history. We will address
several observational aspects of disk truncations: their existence, not only in
normal HSB galaxies, but also in LSB and even dwarf galaxies; their detailed
shape, not sharp cut-offs as thought before, but in fact demarcating the start
of a region with a steeper exponential distribution of starlight; their
possible association with bars; as well as problems related to the
line-of-sight integration for edge-on galaxies (the main targets for truncation
searches so far). Taken together, these observations currently favour the
star-formation threshold model, but more work is necessary to implement the
truncations as adequate parameters characterising galactic disks.Comment: LaTeX, 10 pages, 6 figures, presented at the "Penetrating Bars
through Masks of Cosmic Dust" conference in South Africa, proceedings
published by Kluwer, and edited by Block, D.L., Freeman, K.C., Puerari, I., &
Groess, R; v3 to match published versio
Modulating attentional load affects numerosity estimation: evidence against a pre-attentive subitizing mechanism
Traditionally, the visual enumeration of a small number of items (1 to about 4), referred to as subitizing, has been thought of as a parallel and pre-attentive process and functionally different from the serial attentive enumeration of larger numerosities. We tested this hypothesis by employing a dual task paradigm that systematically manipulated the attentional resources available to an enumeration task. Enumeration accuracy for small numerosities was severely decreased as more attentional resources were taken away from the numerical task, challenging the traditionally held notion of subitizing as a pre-attentive, capacity-independent process. Judgement of larger numerosities was also affected by dual task conditions and attentional load. These results challenge the proposal that small numerosities are enumerated by a mechanism separate from large numerosities and support the idea of a single, attention-demanding enumeration mechanism
- …