60 research outputs found

    Energieeffizienz im Bau- und Maschinenwesen

    Get PDF
    25.-27.September 2017 Liberec, Tschechische Republik Der Tagungsband der Tagung Energieeffizienz im Bau- und Maschinenwesen im September 2017 an der TU Liberec enthält verschiedene aktuelle Forschungsbeiträge mit Bezug zur Energieeffizienz

    Structural Evolution of Layered Manganese Oxysulfides during Reversible Electrochemical Lithium Insertion and Copper Extrusion.

    Get PDF
    The electrochemical lithiation and delithiation of the layered oxysulfide Sr2MnO2Cu4-δS3 has been investigated by using a combination of in situ powder X-ray diffraction and ex situ neutron powder diffraction, X-ray absorption and 7Li NMR spectroscopy, together with a range of electrochemical experiments. Sr2MnO2Cu4-δS3 consists of [Sr2MnO2] perovskite-type cationic layers alternating with highly defective antifluorite-type [Cu4-δS3] (δ ≈ 0.5) anionic layers. It undergoes a combined displacement/intercalation (CDI) mechanism on reaction with Li, where the inserted Li replaces Cu, forming Li4S3 slabs and Cu+ is reduced and extruded as metallic particles. For the initial 2-3% of the first discharge process, the vacant sites in the sulfide layer are filled by Li; Cu extrusion then accompanies further insertion of Li. Mn2.5+ is reduced to Mn2+ during the first half of the discharge. The overall charging process involves the removal of Li and re-insertion of Cu into the sulfide layers with re-oxidation of Mn2+ to Mn2.5+. However, due to the different diffusivities of Li and Cu, the processes operating on charge are quite different from those operating during the first discharge: charging to 2.75 V results in the removal of most of the Li, little reinsertion of Cu, and good capacity retention. A charge to 3.75 V is required to fully reinsert Cu, which results in significant changes to the sulfide sublattice during the following discharge and poor capacity retention. This detailed structure-property investigation will promote the design of new functional electrodes with improved device performance

    From LiNiO₂ to Li₂NiO₃ : Synthesis, Structures and Electrochemical Mechanisms in Li-Rich Nickel Oxides

    Get PDF
    The Li−Ni−O phase diagram contains a variety of compounds, most of which are electrochemically active in Li-ion batteries. Other than the well-known LiNiO2, here we report a facile solid-state method to prepare Li2NiO3 and other Li-rich Ni oxides of composition Li1+xNi1−xO2 (0 ≤ x ≤ 0.33). We characterize their crystal and electronic structure, exhibiting a highly oxidized Ni state and defects of various nature (Li−Ni disorder, stacking faults, oxygen vacancies). We then investigate the use of Li2NiO3 as a cathode active material and show its remarkably high specific capacity, which however fades quickly. While we demonstrate that the initial capacity is due to irreversible O2 release, such process stops quickly in favor of more classical reversible redox mechanisms that allow cycling the material for >100 cycles. After the severe oxygen loss (∼15−20%) and prolonged cycling, the Bragg reflections of Li2NiO3 disappear. Analysis of the diffracted intensities suggests the resulting phase is a disordered rock salt-type material with high Li content, close to Li0.5Ni0.5O, never reported to date and capable of Li diffusion. Our findings demonstrate that the Li−Ni−O phase diagram has not been fully investigated yet, especially concerning the preparation of new promising materials by out-of-equilibrium methods

    Accretion of Planetary Material onto Host Stars

    Full text link
    Accretion of planetary material onto host stars may occur throughout a star's life. Especially prone to accretion, extrasolar planets in short-period orbits, while relatively rare, constitute a significant fraction of the known population, and these planets are subject to dynamical and atmospheric influences that can drive significant mass loss. Theoretical models frame expectations regarding the rates and extent of this planetary accretion. For instance, tidal interactions between planets and stars may drive complete orbital decay during the main sequence. Many planets that survive their stars' main sequence lifetime will still be engulfed when the host stars become red giant stars. There is some observational evidence supporting these predictions, such as a dearth of close-in planets around fast stellar rotators, which is consistent with tidal spin-up and planet accretion. There remains no clear chemical evidence for pollution of the atmospheres of main sequence or red giant stars by planetary materials, but a wealth of evidence points to active accretion by white dwarfs. In this article, we review the current understanding of accretion of planetary material, from the pre- to the post-main sequence and beyond. The review begins with the astrophysical framework for that process and then considers accretion during various phases of a host star's life, during which the details of accretion vary, and the observational evidence for accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie

    A very luminous magnetar-powered supernova associated with an ultra-long gamma-ray burst

    Get PDF
    A new class of ultra-long duration (>10,000 s) gamma-ray bursts has recently been suggested1,2,3. They may originate in the explosion of stars with much larger radii than normal long gamma-ray bursts3,4 or in the tidal disruptions of a star3. No clear supernova had yet been associated with an ultra-long gamma-ray burst. Here we report that a supernova (2011kl) was associated with the ultra-long duration burst 111209A, at z=0.677. This supernova is more than 3 times more luminous than type Ic supernovae associated with long gamma-ray bursts5,6,7, and its spectrum is distinctly different. The continuum slope resembles those of super-luminous supernovae8,9, but extends farther down into the rest-frame ultra-violet implying a low metal content. The light curve evolves much more rapidly than super-luminous supernovae. The combination of high luminosity and low metal-line opacity cannot be reconciled with typical type Ic supernovae, but can be reproduced by a model where extra energy is injected by a strongly magnetized neutron star (a magnetar), which has also been proposed as the explanation for super-luminous supernovae20,20a

    Tagungsberichte der 4. Internationalen Tagung über Energieversorgung und Energieeffizienz und "5 Jahre NESEFF"

    No full text
    Climate change, CO2 reduction, resource efficiency are only 3 current keywords that describe the current industrial-economic situation. In order to influence climate change effectively, the conversion of supply systems with technically usable forms of energy must succeed in the next decade. The international network founded in Baku in 2015 bundles research activities in the broad field of energy supply and energy efficiency. Discuss current research approaches and results with scientists and experts from renowned universities and follow Azerbaijan's efforts to implement the energy revolution.Klimawandel, CO2 Reduzierung, Ressourceneffizienz sind nur 3 aktuelle Schlagworte, die die gegenwärtige industriell-ökonomische Situation beschreiben. Dabei muss der Umbau der Versorgungssysteme mit technisch nutzbaren Energieformen im nächsten Jahrzehnt erfolgreich gelingen, um die klimatischen Veränderungen wirksam zu beeinflussen. Das im Jahre 2015 in Baku gegründete internationale Netzwerk bündelt die Forschungsaktivitäten auf dem breiten Gebiet von Energieversorgung und Energieeffizienz. Diskutieren sie mit den Wissenschaftlern und Experten aus namhaften Universitäten über aktuelle Forschungsansätze und Ergebnisse und verfolgen sie die Anstrengungen Aserbaidschans, die Energiewende zu realisieren

    3. Ingenieurtag 2016 der Fakultät Maschinenbau, Elektro- und Energiesysteme - GUS und Osteuropatag - NESEFF-Netzwerktreffen 2016

    Get PDF
    Dieser Tagungsband enthält eine Vielzahl von Vorträgen und Veröffentlichungen mit Bezug zu Energieeffizienz
    corecore