931 research outputs found

    Improving Code Response Time through Strategic Positioning of Nursing House Supervisors: Results of a Nurse-Led Intervention

    Get PDF
    Background: In many settings, the nursing house supervisors (NHS) are a critical part of the entity’s code response team. To date, much of the research on code response has focused on improving response times through staff-focused interventions such as simulation training. However, use of data to determine where to physically place NHS in the building to optimize code response times has received little attention, especially in an outpatient oncology setting. Purpose: To test whether using data on code frequency/location to strategically position NHS could reduce mean code response times in large (450,000-ft2) outpatient cancer center. Methods: Data on code volume, type, distance and estimated response time before and after strategic repositioning was collected by staff over a 238-day period occurring between September, 2019 and April, 2020. Results: Over an eight-month period, NHS staff responded to 64 codes. Prior to repositioning, 77.3% of codes required NHS to travel to a different building and through at least one floor and/or departments to arrive at the code. After strategic repositioning, mean code response times at our center fell from 3.4±0.7 min, on average, to 1.5 ± 0.6 min (p \u3c .000). Improvements in code response times and distance travelled were observed regardless of code type, time of day, or individual NHS responding to the code. Conclusions: Results suggest that a data-driven strategy for determining where to place NHS in the building based on code frequency and location may be a useful way for oncology centers to improve code response times

    Muscle-specific knockout of general control of amino acid synthesis 5 (GCN5) does not enhance basal or endurance exercise-induced mitochondrial adaptation

    Get PDF
    Objective  Lysine acetylation is an important post-translational modification that regulates metabolic function in skeletal muscle. The acetyltransferase, general control of amino acid synthesis 5 (GCN5), has been proposed as a regulator of mitochondrial biogenesis via its inhibitory action on peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α). However, the specific contribution of GCN5 to skeletal muscle metabolism and mitochondrial adaptations to endurance exercise in vivo remain to be defined. We aimed to determine whether loss of GCN5 in skeletal muscle enhances mitochondrial density and function, and the adaptive response to endurance exercise training.  Methods  We used Cre-LoxP methodology to generate mice with muscle-specific knockout of GCN5 (mKO) and floxed, wildtype (WT) littermates. We measured whole-body energy expenditure, as well as markers of mitochondrial density, biogenesis, and function in skeletal muscle from sedentary mice, and mice that performed 20 days of voluntary endurance exercise training.  Results  Despite successful knockdown of GCN5 activity in skeletal muscle of mKO mice, whole-body energy expenditure as well as skeletal muscle mitochondrial abundance and maximal respiratory capacity were comparable between mKO and WT mice. Further, there were no genotype differences in endurance exercise-mediated mitochondrial biogenesis or increases in PGC-1α protein content.  Conclusion  These results demonstrate that loss of GCN5 in vivo does not promote metabolic remodeling in mouse skeletal muscle

    High-Throughput Analysis of Calcium Signalling Kinetics in Astrocytes Stimulated with Different Neurotransmitters

    Get PDF
    Astrocytes express a wide range of receptors for neurotransmitters and hormones that are coupled to increases in intracellular Ca2+ concentration, enabling them to detect activity in both neuronal and vascular networks. There is increasing evidence that astrocytes are able to discriminate between different Ca2+-linked stimuli, as the efficiency of some Ca2+ dependent processes – notably release of gliotransmitters – depends on the stimulus that initiates the Ca2+ signal. The spatiotemporal complexity of Ca2+ signals is substantial, and we here tested the hypothesis that variation in the kinetics of Ca2+ responses could offer a means of selectively engaging downstream targets, if agonists exhibited a “signature shape” in evoked Ca2+ response. To test this, astrocytes were exposed to three different receptor agonists (ATP, glutamate and histamine) and the resultant Ca2+ signals were analysed for systematic differences in kinetics that depended on the initiating stimulus. We found substantial heterogeneity between cells in the time course of Ca2+ responses, but the variation did not correlate with the type or concentration of the stimulus. Using a simple metric to quantify the extent of difference between populations, it was found that the variation between agonists was insufficient to allow signal discrimination. We conclude that the time course of global intracellular Ca2+ signals does not offer the cells a means for distinguishing between different neurotransmitters

    High-Frequency (> 100 GHz) and High-Speed (< 10 ps) Electronic Devices

    Get PDF
    Contains an introduction, reports on four research projects and a list of publications.Defense Advanced Research Projects Agency Contract MDA972-90-C-0021National Aeronautics and Space Administration Grant NAGW-4691National Aeronautics and Space Administration Grant 959705National Science Foundation Grant AST 94-23608National Science Foundation/MRSEC Grant DMR 94-00334MIT Lincoln Laboratory Advanced Concept Program Grant BX-5464U.S. Army Research Office Grant DAAH04-95-1-0610Hertz Foundation FellowshipU.S. Army - Office of Scientific Research Grant DAAH04-94-G-016

    High-Frequency (>100 GHz) and High-Speed (<1 ps) Electronic Devices

    Get PDF
    Contains an introduction, reports on three research projects and a list of publications.Advanced Research Projects Agency Contract MDA972-90-C-0021National Aeronautics and Space Administration Grant NAG2-693National Aeronautics and Space Administration Contract 959705National Science Foundation/MRSEC Grant DMR 94-00334MIT Lincoln Laboratory Advanced Concept Program Contract BX-5464MIT Research Laboratory of Electronics Postdoctoral FellowshipRome Air Force Laboratory Graduate FellowshipU.S. Army Research Office Grant DAAL03-92-G-0251Hertz Foundation FellowshipU.S. Army Research Office/ASSERT Grant DAAH04-94-G-016

    A community-maintained standard library of population genetic models

    Get PDF
    The explosion in population genomic data demands ever more complex modes of analysis, and increasingly, these analyses depend on sophisticated simulations. Recent advances in population genetic simulation have made it possible to simulate large and complex models, but specifying such models for a particular simulation engine remains a difficult and error-prone task. Computational genetics researchers currently re-implement simulation models independently, leading to inconsistency and duplication of effort. This situation presents a major barrier to empirical researchers seeking to use simulations for power analyses of upcoming studies or sanity checks on existing genomic data. Population genetics, as a field, also lacks standard benchmarks by which new tools for inference might be measured. Here, we describe a new resource, stdpopsim, that attempts to rectify this situation. Stdpopsim is a community-driven open source project, which provides easy access to a growing catalog of published simulation models from a range of organisms and supports multiple simulation engine backends. This resource is available as a well-documented python library with a simple command-line interface. We share some examples demonstrating how stdpopsim can be used to systematically compare demographic inference methods, and we encourage a broader community of developers to contribute to this growing resource.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference
    • …
    corecore