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Abstract The explosion in population genomic data demands ever more complex modes of

analysis, and increasingly, these analyses depend on sophisticated simulations. Recent advances in

population genetic simulation have made it possible to simulate large and complex models, but

specifying such models for a particular simulation engine remains a difficult and error-prone task.
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Computational genetics researchers currently re-implement simulation models independently,

leading to inconsistency and duplication of effort. This situation presents a major barrier to

empirical researchers seeking to use simulations for power analyses of upcoming studies or sanity

checks on existing genomic data. Population genetics, as a field, also lacks standard benchmarks by

which new tools for inference might be measured. Here, we describe a new resource, stdpopsim,

that attempts to rectify this situation. Stdpopsim is a community-driven open source project, which

provides easy access to a growing catalog of published simulation models from a range of

organisms and supports multiple simulation engine backends. This resource is available as a well-

documented python library with a simple command-line interface. We share some examples

demonstrating how stdpopsim can be used to systematically compare demographic inference

methods, and we encourage a broader community of developers to contribute to this growing

resource.

Introduction
While population genetics has always used statistical methods to make inferences from data, the

degree of sophistication of the questions, models, data, and computational approaches used have

all increased over the past two decades. Currently, there exist a myriad of computational methods

that can infer the histories of populations (Gutenkunst et al., 2009; Li and Durbin, 2011;

Excoffier et al., 2013; Schiffels and Durbin, 2014; Terhorst et al., 2017; Ragsdale and Gravel,

2019), the distribution of fitness effects (Boyko et al., 2008; Kim et al., 2017; Tataru et al., 2017;

Fortier et al., 2019; Huang and Siepel, 2019; Vecchyo et al., 2019), recombination rates

(McVean et al., 2004; Chan et al., 2012; Lin et al., 2013; Adrion et al., 2020; V Barroso et al.,

2019), and the extent of positive selection in genome sequence data (Kim and Stephan, 2002;

Eyre-Walker and Keightley, 2009; Alachiotis et al., 2012; Garud et al., 2015; DeGiorgio et al.,

2016; Kern and Schrider, 2018; Sugden et al., 2018). While these methods have undoubtedly

increased our understanding of genetic and evolutionary processes, very little has been done to sys-

tematically benchmark the quality of these inferences or their robustness to deviations from their

underlying assumptions. As large databases of population genetic variation begin to be used to

inform public health procedures, the accuracy and quality of these inferences is becoming ever more

important.

Assessing the accuracy of inference methods for population genetics is challenging in large part

because the ‘ground-truth’ in question generally comes not from direct empirical observations, as

the relevant historical processes can rarely be observed, but instead from simulations. Population

genetic simulations are therefore critically important to the field, yet there has been no systematic

attempt to establish community standards or best practices for executing them. Instead, the general

modus operandi to date has been for individual groups to validate their own methods using simula-

tions coded from scratch. Often these simulations are more useful to showcase a novel method than

to rigorously compare it with competing methods. Moreover, this situation results in a great deal of

duplicated effort, and contributes to decreased reproducibility and transparency across the entire

field. It is also a barrier to entry to the field, because new researchers can struggle with the many

steps involved in implementing a state-of-the-art population genetics simulation, including identify-

ing appropriate demographic models from the literature, translating them into input for a simulator,

and choosing appropriate values for key population genetic parameters, such as the mutation and

recombination rates.

A related issue is that it has been challenging to assess the degree to which modeling assump-

tions and choices of data summaries can affect population genetic inferences. Standardized simula-

tions would enable these questions to be systematically examined. Importantly, there are clear

examples of different methods yielding fundamentally different conclusions. For example, Markovian

coalescent methods applied to human genomes have suggested large ancient (> 100,000 years ago)

ancestral population sizes and bottlenecks that have not been detected by other methods based on

allele frequency spectra (see Beichman et al., 2017). These distinct methods differ in how they

model, summarize, and optimize fit to genetic variation data, suggesting that such design choices

can greatly affect the performance of the inference. Furthermore, some methods are likely to per-

form better than others under certain scenarios, but researchers lack principled guidelines for
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selecting the best method for addressing their particular questions. The need for guidance from sim-

ulated data will only increase as researchers seek to apply population genetic methods to a growing

collection of non-model taxa.

For these reasons, we have generated a standardized, community-driven resource for simulating

published demographic models from a number of popular study systems. This resource, which we

call stdpopsim, makes running realistic simulations for population genetic analysis a simple matter

of choosing pre-implemented models from a community-maintained catalog. The stdpopsim cata-

log currently contains six species: humans, Pongo abelii, Canis familiaris, Drosophila melanogaster,

Arabidopsis thaliana, and Escherichia coli. For each species, the catalog contains curated information

on our current understanding of the physical organization of its genome, inferred genetic maps,

population-level parameters (e.g. mutation rate and generation time estimates), and published

demographic models. These models and parameters are meant to represent the field’s current

understanding, and we intend for this resource to evolve as new results become available, and other

existing models are added to stdpopsim by the community. We have implemented both a com-

mand line interface and a simple Python API that can be used to simulate genomic data from a

choice of organism, genetic map, chromosome, and demographic history. In this way, stdpopsim

will lower the barrier to high-quality simulation for exploratory analyses, enable rigorous evaluation

of population genetic software, and contribute to increased reliability of population genetic

inferences.

The stdpopsim library has been developed by the PopSim Consortium using a distributed open

source model, with strong procedures in place to continue its growth and maintain quality. Impor-

tantly, we developed rigorous quality control methods to ensure that we have correctly imple-

mented the models as described in their original publication and provided documented methods for

others to contribute new models. We invite new collaborators to join our community: those inter-

ested should visit our developer documentation at https://stdpopsim.readthedocs.io/en/latest/

development.html. Below we describe the resource and give examples of how it can be used to

benchmark demographic inference methods.

Results
The stdpopsim library is a community-maintained collection of empirical genome data and popula-

tion genetics simulation models, illustrated in Figure 1. The package (https://github.com/popsim-

consortium/stdpopsim) centers on a catalog of genomic information and demographic models for a

growing list of species (Figure 1A), and software resources to facilitate efficient simulations

(Figure 1B–C). Given the genome data and simulation model descriptions defined within the library,

it is straightforward to run standardized simulations across a range of organisms. Stdpopsim has a

Python API and a user-friendly command line interface, allowing users with minimal experience direct

access to state-of-the-art simulations. Simulations are output in the ‘succinct tree sequence’ format

(Kelleher et al., 2016; Kelleher et al., 2018; Kelleher et al., 2019), which contains complete genea-

logical information about the simulated samples, is extremely compact, and can be processed effi-

ciently using the tskit library (Kelleher et al., 2016; Kelleher et al., 2018). The tree sequence format

could also be converted to other formats (e.g., VCF) by the user if desired.

The species catalog
The central feature of stdpopsim is the species catalog, a systematic organization of the key quanti-

tative data needed to simulate a given species. Data are currently available for humans, P. abelii, C.

familiaris, D. melanogaster, A. thaliana, and E. coli. A species definition consists of two key elements.

Firstly, the library defines some basic information about our current understanding of each species’

genome, including information about chromosome lengths, average mutation rate estimates, and

generation times. We also provide access to detailed empirical information such as inferred genetic

maps, which model observed heterogeneity in recombination rate along chromosomes. Such maps

are often large, so we do not distribute them directly with the software, but make them available for

download in a standard format. When a simulation using such a map is requested by the user,

stdpopsim will transparently download the map data into a local cache, where it can be quickly

retrieved for subsequent simulations. In the initial version of stdpopsim, we support the HapMapII

(Frazer et al., 2007) and deCODE (Kong et al., 2010) genetic maps for humans; the Nater et al.,
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2017 maps for P. abelii; the Campbell et al., 2016 map for C. familiaris; the Salomé et al., 2012

map for A. thaliana; and the Comeron et al., 2012 map for D. melanogaster. Adding further maps

to the library is straightforward. The second key element of a species description within stdpopsim

is a set of carefully curated population genetic model descriptions from the literature, which allow

simulation under specific historical scenarios that have been fit to present-day patterns of genetic

variation (see the Materials and methods for a description of the community development and qual-

ity-control process for these models.)

The current demographic models in the stdpopsim catalog are shown in Table 1. Homo sapiens

currently has the richest selection of population models. These include: a simplified version of the

Tennessen et al., 2012 model with only the African population specified (expansion from the ances-

tral population and recent growth; Africa_1T12); the three-population model of

Gutenkunst et al., 2009, which specifies the out-of-Africa bottleneck as well as the subsequent

divergence of the European and Asian populations (OutOfAfrica_3G09); the Tennessen et al., 2012

two-population variant of the Gutenkunst et al. model, which does not include Asian populations

but more explicitly models recent rapid human population growth in Europe (OutOfAfrica_2T12);

the Browning et al., 2018 admixture model for American populations, which specifies ancestral Afri-

can, European, and Asian population components (AmericanAdmixture_4B11); a three-population

Figure 1. Structure of stdpopsim. (A) The hierarchical organization of the stdpopsim catalog contains all model simulation information within individual

species (expanded information shown here for H. sapiens only). Each species is associated with a representation of the physical genome, and one or

more genetic maps and demographic models. Dotted lines indicate that only a subset of these categories is shown. At right we show example code to

specify and simulate models using (B) the python API or (C) the command line interface.
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out-of-Africa model from Ragsdale and Gravel, 2019, which includes archaic admixture (OutOfA-

fricaArchaicAdmixture_5R19); a complex model of ancient Eurasian admixture from

Kamm et al., 2019 (AncientEurasia_9K19); and a synthetic model of oscillating population size

from Schiffels and Durbin, 2014 (Zigzag_1S14).

For D. melanogaster, we have implemented the three-epoch model estimated by Sheehan and

Song, 2016 from an African sample (African3Epoch_1S16), as well as the out-of-Africa divergence

and associated bottleneck model of Li and Stephan, 2006, which jointly models African and Euro-

pean populations (OutOfAfrica_2L06). For A. thaliana, we implemented the model in

Durvasula et al., 2017 inferred using MSMC. This model includes a continuous change in population

size over time, rather than pre-specified epochs of different population sizes (SouthMiddleAt-

las_1D17). We have also implemented a two-epoch and a three-epoch model estimated from Afri-

can samples of A. thaliana in Huber et al., 2018 (African2Epoch_1H18 and

African3Epoch_1H18).

In addition to organism-specific models, stdpopsim also includes a generic piecewise constant

size model and isolation with migration (IM) model which can be used with any genome and genetic

map. Together, these models contain many features believed to affect observed patterns of poly-

morphism (e.g. bottlenecks, population growth, admixture) and therefore provide useful bench-

marks for method development.

To guarantee reproducibility, we have standardized naming conventions for species, genetic

maps, and demographic models that will enable long-term stability of unique identifiers used

throughout stdpopsim, as described in our documentation (https://stdpopsim.readthedocs.io/en/

latest/development.html#naming-conventions).

Table 1. Initial set of demographic models in the catalog and summary of computing resources needed for simulation.

For each model, we report the CPU time, maximum memory usage and the size of the output tskit file, as simulated using the msprime

simulation engine (version 0.7.4). In each case, we simulate 100 samples drawn from the first population, for the shortest chromosome

of that species and a constant chromosome-specific recombination rate. The times reported are for a single run on an Intel i5-7600K

CPU. Computing resources required will vary widely depending on sample sizes, chromosome length, recombination rates and other

factors.

Model ID Citation CPU(s) Ram(MB) File(MB)

HomSap (Homo sapiens)

Africa_1T12 Tennessen et al., 2012 10.0 194.2 23.3

Zigzag_1S14 Schiffels and Durbin, 2014 3.3 106.1 7.9

AshkSub_7G19 Gladstein and Hammer, 2019 13.8 216.3 26.4

OutOfAfrica_3G09 Gutenkunst et al., 2009 10.2 182.0 21.1

OutOfAfrica_2T12 Tennessen et al., 2012 10.7 198.4 24.1

AncientEurasia_9K19 Kamm et al., 2019 63.1 304.4 41.2

AmericanAdmixture_4B11 Browning et al., 2018 10.6 188.1 22.3

PapuansOutOfAfrica_10J19 Jacobs et al., 2019 204.5 524.7 77.8

OutOfAfricaArchaicAdmixture_5R19 Ragsdale and Gravel, 2019 8.8 185.4 21.7

DroMel (Drosophila melanogaster)

OutOfAfrica_2L06 Li and Stephan, 2006 252.8 678.0 106.7

African3Epoch_1S16 Sheehan and Song, 2016 3.0 123.9 11.5

AraTha (Arabidopsis thaliana)

African2Epoch_1H18 Huber et al., 2018 4.3 220.5 16.5

African3Epoch_1H18 Huber et al., 2018 2.6 241.3 18.4

PonAbe (Pongo abelii)

TwoSpecies_2L11 Locke et al., 2011 7.2 171.9 14.7
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Simulation engines
Currently, stdpopsim uses the msprime coalescent simulator (Kelleher et al., 2016) as the default

simulation engine. Coalescent simulations, while highly efficient, are limited in their ability to model

continuous geography or complex selection scenarios, such as recurrent sweeps and background

selection. For these reasons, we have also implemented the forward-time simulator, SLiM

(Haller and Messer, 2019; Haller and Messer, 2019), as an alternative backend engine to stdpop-

sim, allowing for the simulation of processes that cannot be modeled under the coalescent. How-

ever, as forward-time simulators explicitly model all individuals in a population, simulating large

population sizes can be highly demanding of computational resources. One common practice used

to address this challenge is to simulate a smaller population, but to rescale resulting times, mutation

rates, recombination rates, and selection coefficients so that the intensity of mutation, recombina-

tion, and allele frequency change due to selection per unit time remains the same (see the SLiM

manual and Uricchio and Hernandez, 2014). Our implementation of the SLiM backend allows easy

use of this rescaling through a single ‘scaling factor’ argument. Such down-scaled simulations are

not completely equivalent to simulating all individuals in the population, and may lead to subtle dif-

ferences, especially in the presence of selection. However, since many sequence-based measures of

population diversity remain nearly unchanged when rescaling in this fashion, this practice is effective

for many purposes and widely employed.

We validated our implementation of the SLiM engine by comparing estimates of several popula-

tion genetic summary statistics for neutral simulations generated by both SLiM and msprime. Exam-

ples of this validation for the AncientEurasia_9K19 model (Kamm et al., 2019) are shown in

Appendix 1—figure 1 and Appendix 1—figure 2. For this model, down-scaling factors of up to 10

produce patterns of both diversity and linkage disequilibrium that are indistinguishable from those

observed under the coalescent (i.e. msprime). Scaling down by a factor of 50 does appear to modify

the distribution of these sequence statistics. Interestingly, the apparent difference between distribu-

tions is somewhat larger when simulating using a uniform recombination rate (Appendix 1—figure

2), likely due to the lower variation in the values of these statistics. Importantly, both comparisons

validate the equivalence of SLiM and msprime when no down-scaling is applied. The results are also

optimistic about the rescaling strategy to reduce computational burden, but the possible effects are

not well-understood, so results relying on rescaled simulations should be carefully validated.

Documentation and reproducibility
The stdpopsim command-line interface, by default, outputs citation information for the models,

genetic maps, and simulation engines used in any particular run. We hope that this feature will

encourage users to appropriately acknowledge the resources used in published work, and encour-

age authors publishing demographic models to contribute to our ongoing community-driven devel-

opment process. Together with the stdpopsim version number and the long-term stable identifiers

for population models and genetic maps, this citation information will result in well-documented and

reproducible simulation workflows. The individual tree sequence files produced by stdpopsim also

contain complete provenance information including the command line arguments, operating system

environment and versions of key libraries used.

Use case: comparing methods of demographic inference
As an example of the utility of stdpopsim, we demonstrate how it can be easily used to perform a

fair comparison of popular demographic inference methods. Although we present comparison of

results from several methods, our aim at this stage is not to provide an exhaustive evaluation or

ranking of these methods. Our hope is instead to demonstrate how stdpopsim will facilitate more

detailed future explorations of the strengths and weaknesses of the numerous inference methods

that are available to the population genetics community (see Discussion).

We start by comparing popular methods for estimating population size histories of single popula-

tions and subsequently show simple examples of multi-population inference. To reproducibly evalu-

ate and compare the performance of inference methods, we developed workflows using

snakemake (Köster and Rahmann, 2012), available from https://github.com/popsim-consortium/

analysis, that allow efficient computing in multicore or cluster environments. Our workflow generates

R replicates of C chromosomes, producing n population samples in each of a total of R� C
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Figure 2. Comparing estimates of NðtÞ in humans. Here we show estimates of population size over time (NðtÞ) inferred using four different methods:

smc++, stairway plot, and MSMC with n ¼ 2 and n ¼ 8 samples. Data were generated by simulating replicate human genomes under the

OutOfAfricaArchaicAdmixture_5R19 model (Ragsdale and Gravel, 2019) and using the HapMapII_GRCh37 genetic map (Frazer et al., 2007).

From top to bottom, we show estimates for each of the three populations in the model (YRI, CEU, and CHB). In shades of blue we show the estimated

Figure 2 continued on next page
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simulations for each demographic model. After simulation, the workflow prepares input files for

each inference method by grouping all n� R� C simulated chromosomes into a single file. Each file

is then converted into an input file appropriate for each inference method (such that all inference

methods run on the same simulation replicates). Each of the inference programs are then run in par-

allel, and finally, estimates of population size history from each program are plotted.

Single-population demographic models
For single-population demographic models, we compared MSMC (Schiffels and Durbin, 2014), SMC

++ (Terhorst et al., 2017), and stairwayXplot (Liu and Fu, 2015) on simulated genomes sampled

from a single population, under several of the demographic models described above. However,

these experiments raise the question of what to use as the ‘true’ population sizes in the case of

multi-population models with migration. In particular, a simple single-population model that is fit to

data simulated under a multi-population model, is not expected to recover the actual simulated

population sizes because of model misspecification. Instead, we argue that the best one may expect

in such a scenario is to infer a model that accurately reflects the coalescence time distribution of the

simulated model. Under a multi-population model, the coalescence time distribution is influenced by

migration between the target population and populations not analyzed in inference, as well as by

the ancestral effective population sizes. The inverse coalescence rate is commonly interpreted as the

effective population size, since these are equal in a single-population model with random mating.

We thus analytically computed inverse coalescence rates in msprime for each simulated model, and

used them as benchmarks for the ‘true’ effective population sizes. See the Appendix for a precise

definition and description of the inverse coalescence rate computation.

Figure 2 presents the results from simulations under OutOfAfricaArchaicAdmixture_5R19, a

model of human migration out of Africa that includes archaic admixture (Ragsdale and Gravel,

2019), along with an empirical genetic map.In each column of this figure we show the inferred popu-

lation size history (denoted NðtÞ) from samples taken from each of the three extant populations in

the model. In each row we show comparisons among the methods (including two sample sizes for

MSMC). Blue lines show estimates from each of three replicate whole genome simulations, and black

lines indicate the ‘true’ values depicted by the inverse coalescence rates (although in this specific

model the inverse coalescence rates are very close to the simulated population sizes; Appendix 1—

figure 3). While there is variation in accuracy among methods, populations, and individual replicates,

the methods generally produce a good estimate of the true effective population sizes of the simula-

tions, with inferred values mostly within a factor of two of the truth, and most methods inferring a

bottleneck at approximately the correct time.

Using stdpopsim, we can readily compare performance on this benchmark to that based on a

different model of human history. In Appendix 1—figure 4, we show estimates of NðtÞ from simula-

tions using the same physical and genetic maps, but from the OutOfAfrica_3G09 demographic

model that does not include archaic admixture. Again we see that each of the methods is capturing

relevant parts of the population history, although the accuracy varies across time. In comparing infer-

ences between the models it is interesting to note that NðtÞ estimates for the CHB and CEU simu-

lated populations are generally better across methods than estimates from the YRI simulated

population.

We can also see how well methods might do at recovering the population history of a constant-

sized population, with human genome architecture and genetic map. We show results of such an

experiment in Appendix 1—figure 5. All methods recover population size within a factor of two of

the simulated values; however, SMC-based methods tend to infer sinusoidal patterns of population

size even though no such change is present.

As most method development for population genetics has been focused on human data, it is

important to ask how such methods might perform in non-human genomes. Figure 3 shows parame-

ter estimates from the African3Epoch_1S16 model, originally estimated from an African sample of D.

Figure 2 continued

NðtÞ trajectories for each of three replicates. As a proxy for the ‘truth’, in black we show inverse coalescence rates as calculated from the demographic

model used for simulation (see text).
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melanogaster (Sheehan and Song, 2016), and Appendix 1—figure 6 shows estimates from simula-

tions of A. thaliana under the African2Epoch_1H18 model originally inferred by Huber et al., 2018.

In both cases, as with humans, we use stdpopsim to simulate replicate genomes using an empiri-

cally-derived genetic map, and try to infer back parameters of the simulation model. Accuracy is

mixed among methods when doing inference on simulated data from these D. melanogaster and A.

thaliana models, and generally worse than what we observe for simulations of the human genome.

Multi-population demographic models
As stdpopsim implements multi-population demographic models, we also explored parameter esti-

mation of population divergence parameters. In particular, we simulated data under multi-popula-

tion models for humans and D. melanogaster and then inferred parameters using qaqi,

fastsimcoal2, and smc++. For simplicity, we conducted inference in qaqi and fastsimcoal2 by

fitting an isolation with migration (IM) model with constant population sizes and bi-directional migra-

tion (Hey and Nielsen, 2004). Our motivation for fitting this simple IM model was to mimic the typi-

cal approach of two population inference on empirical data, where the user is not aware of the ‘true’

underlying demography and the inference model is often misspecified. For human models with more

than two populations (e.g. Gutenkunst et al., 2009) this limitation means that users are inferring

parameters for a model that does not match the model from which the data were generated

(Figure 4A and B). However, since the model used for inference also allows gene flow between pop-

ulations, we directly compare estimated effective population sizes to the values used in simulations

(black line in Figure 4C) and not the inverse coalescence rates.

In Figure 4C, we show estimates of population sizes and divergence time, for each of the infer-

ence methods, using samples drawn from African and European populations simulated under the

OutOfAfrica_3G09 model. Our results highlight many of the strengths and weaknesses of the dif-

ferent methods. For instance, the SFS-based approaches with simple IM models do not capture

recent exponential growth in the CEU population, but do consistently recover the simulated YRI

population size history. Moreover, these approaches allow migration rates to be estimated (Appen-

dix 1—figure 7), and lead to more accurate inferences of divergence times. However, these migra-

tion rate estimates are somewhat biased. In contrast, smc++ is much better at capturing the recent

Figure 3. Comparing estimates of NðtÞ in Drosophila. Population size over time (NðtÞ) estimated from an African population sample. Data were

generated by simulating replicate D. melanogaster genomes under the African3Epoch_1S16 model (Sheehan and Song, 2016) with the genetic map of

Comeron et al., 2012. In shades of blue we show the estimated NðtÞ trajectories for each replicate. As a proxy for the ‘truth’, in black we show inverse

coalescence rates as calculated from the demographic model used for simulation (see text).
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Figure 4. Parameters estimated using a multi-population human model. Here we show estimates of NðtÞ inferred using qaqi, fastsimcoal2, and smc++.

(A) Data were generated by simulating replicate human genomes under the OutOfAfrica_3G09 model and using the HapMapII_GRCh37 genetic map

inferred in Frazer et al., 2007. (B) For qaqi and fastsimcoal2 we show parameters inferred by fitting the depicted IM model, which includes population

sizes, migration rates, and a split time between CEU and YRI samples. (C) Population size estimates for each population (rows) from qaqi, fastsimcoal2,

and smc++ (columns). In shades of blue we show NðtÞ trajectories estimated from each simulation, and in black simulated population sizes for the

respective population. The population split time, TDIV , is shown at the bottom (simulated value in black and inferred values in blue), with a common x-

axis to the population size panels.
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exponential growth in the CEU population, though it consistently underestimates divergence times

because it assumes no migration between populations (Figure 4C).

Again, we can extend this analysis to other taxa and examine the performance of these methods

for a two-population model of D. melanogaster. Appendix 1—figure 8 shows inference results using

data simulated under the OutOfAfrica_2L06 model. This model includes an ancestral population

in Africa from which a European population splits off following a bottleneck, with no post-divergence

gene flow between the African and European population (Appendix 1—figure 8A). Here again, we

find that qaqi and fastsimcoal2 infer more consistent histories, but they do not detect the brief

bottleneck in Europe, due to the inference model not allowing for population size changes after the

population split. In addition, qaqi and fastsimcoal2 both do reasonably well at correctly inferring

the absence of migration (Appendix 1—figure 9). In contrast, the inferred demographic parameters

from smc++ are more noisy, though in some cases better capture the short bottleneck in the Euro-

pean population.

Although these results do not represent an exhaustive benchmarking, we have begun to highlight

some of the strengths and weaknesses of these methods. Future work should build on these results

and undertake more in-depth comparisons under a wider range of simulated demographic models.

Discussion
Here, we have described the first major product from the PopSim Consortium: the stdpopsim

library. We have founded the Consortium with a number of specific goals in mind: standardization of

simulation within the population genetics community, increased reproducibility and ease of use of

complex simulations, community-based development and decision making guiding best practices in

population genetics, and benchmarking of inference methods.

The stdpopsim library allows for rigorous standardization of complex population genetic simula-

tions. Population genetics, as a field, has yet to coalesce around a set of standards for the crucial

task of method evaluation, which in our discipline hinges on simulation. In contrast, other fields such

as structural biology (Moult et al., 1995) and machine learning Russakovsky et al., 2015 have a

long track record of standardized method testing. We hope that our efforts represent the beginning

of what will prove to be an equally longstanding and valuable tradition in population genetics.

Besides being a resource for developers of computational methods, we aim for stdpopsim to be

a resource for empirical researchers using genomic data. For instance, stdpopsim could be used in

power analyses to determine adequate sample sizes, or in sanity checks to see if observed data (e.g.

levels of divergence or the allele frequency spectrum) are roughly consistent with the hypothesized

scenario. Currently, many studies would benefit from such simulation-based checks. However, there

are major barriers to implementation, since individual research groups must reimplement complex,

previously published demographic models, a task made especially daunting by additional layers of

realism (e.g. recombination maps).

Benchmarking population size inference
We have illustrated in this paper how stdpopsim can be used for direct comparisons of inferential

methods on a common set of simulations. Our benchmarking comparisons have been limited, but

nevertheless reveal some informative features. For example, at the task of estimating population

size histories for simulated human populations, we find that the sequence-based methods (MSMC and

smc++) perform somewhat better overall—at least for moderate times in the past—than the site fre-

quency spectrum-based method (stairwayXplot), which tends to over-estimate the sizes of oscil-

lations (Figure 2 and Appendix 1—figure 4). In contrast, stairway plot outperforms the sequence-

based methods on simulations of D. melanogaster or A. thaliana populations, in which linkage dis-

equilibrium is reduced (Figure 3 and Appendix 1—figure 6). In simulations of two human popula-

tions (Figure 4), qaqi and fastsimcoal2 do reasonably well at reconstructing the simulated YRI history

and estimating divergence times, but struggle with the more complex simulated CEU history, in

large part because the methods assume constant population sizes. On the other hand, smc++ does

not have the same restrictions on its inferred history, and as a result does much better with the CEU

history but tends to underestimate divergence times due to the assumption of no migration. The

results for the two-population D. melanogaster model (Appendix 1—figure 8) are generally similar.

In these comparisons, fastsimcoal2 and qaqi perform almost identically, which is expected because
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they fit the same models to the same summaries of the data, differing only in how they calculate

model expectations and optimize parameters.

All methods for inferring demographic history have strengths and weaknesses (as recently

reviewed by Beichman et al., 2018). We compared inferences from simulated whole genome data,

but many factors affect choice of methodology. Markovian coalescent methods (MSMC and smc++)

require long contiguous stretches of sequence data. In contrast, frequency spectrum methods (stair-

way plot, qaqi, and fastsimcoal2) can use reduced-representation sequencing data, such as RAD-

seq (Andrews et al., 2016). qaqi and fastsimcoal2 require a pre-specified parametric model,

unlike MSMC, smc++, and stairway plot. Using a parametric approach yields less noisy results, but a

model that is too simple may not capture important demographic events (Figure 4 and Appen-

dix 1—figure 8), and other forms of model misspecification may also produce undesirable behavior.

From a software engineering perspective, methods also differ in their ease of installation and use.

We hope our workflows will assist in the application of all the methods we have considered.

Altogether, these preliminary experiments highlight the utility of stdpopsim for comparing a

variety of inference methods on the same footing, under a variety of different demographic models.

In addition, the ability of stdpopsim to generate data with and without significant features, such as

a genetic map or population-size changes (e.g., Appendix 1—figure 5), allows investigation of the

failure modes of popular methods. Moreover the comparison of methods across the various genome

organizations, genetic maps, and demographic histories of different organisms, provides valuable

information about how methods might perform on non-human systems. Finally, comparison of

results across methods or simulation runs provides an estimate of inference uncertainty, analogous

to parametric bootstrapping, especially when different methods are vulnerable to model misspecifi-

cation in different ways.

Next steps
Stdpopsim is intended to be a fully open, community-developed project. Our implementations of

genome representations and genetic maps for the some of the most common study systems in

computational genetics—humans, Drosophila, and Arabidopsis (among others)—are only intended

to be a starting point for future development. Researchers are invited to contribute to the resource

by adding their organisms and models of choice. The stdpopsim resource is accompanied by

clearly documented standard operating procedures that are intended to minimize barriers to entry

for new developers. In this way, we expect the resource to expand and adapt to meet the evolving

needs of the population genomics community.

One of our goals is to engage research communities studying other taxa, so as to expand the

resource to many more species. Although we have included demographic models and recombina-

tion maps, there are many biological processes that we do not model. Some of the additions that

we are enthusiastic to add are: selection (including distributions of fitness effects, maps of functional

elements, both single and recurrent hitchhiking events, and selection on polygenic traits), gene con-

version, mutation models (rate heterogeneity), more realistic demography (overlapping generations,

separate sexes, mortality/fecundity schedules), geographic population structure, and downstream

aspects of data quality (genotyping and mapping error). Moreover, an in-depth investigation into

the effects of population-size rescaling under many of the above scenarios is warranted, given our

preliminary findings using neutral simulations (Appendix 1—figures 1 and 2). Some other important

processes are more challenging to model with current simulation software, such as structural varia-

tion, changing recombination maps over time, transposable elements, and context-dependent

mutation.

We wish to emphasize that although the included demographic histories are some of the most

widely used models for our current set of species, we anticipate the set of available models to

expand as new methods and new modeling frameworks are developed. For instance, the current

models all describe a small set of discrete, randomly mating populations, which are likely good

approximations for deep-time population history, but may be less useful for methods describing

dynamics of contemporary populations. Stdpopsim’s framework is sufficiently general that more

realistic population models will be easily incorporated, as they are published. Additional aspects of

the framework, such as genome builds, will also continue to change as improvements are made to

our understanding of genome structure.
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Materials and methods

Model quality control
As a consortium we have agreed to a standardized procedure for model inclusion into stdpopsim

that allows for rigorous quality control. Imagine Developer A wants to introduce a new model into

stdpopsim. Developer A implements the demographic model for the relevant organism along with

clear documentation of the model parameters and populations. This model is submitted as a ‘pull

request’, where it is evaluated by a reviewer and then included as ‘preliminary’, but is not linked to

the online documentation nor the command line interface. Developer A submits a quality control

(QC) issue, after which a second developer, Developer B (perhaps found by requesting review from

the broader Consortium), then independently reimplements the model from the relevant primary

sources and adds an automatic unit test for equality between the QC implementation and the pre-

liminary production model. If the two implementations are equivalent, the original model is included

in stdpopsim. If not, we move to an arbitration process whereby A and B first try to work out the

details of what went wrong. If that fails, the original authors of the published model must be con-

tacted to resolve ambiguities. Further details of our QC process can be found in our developer doc-

umentation (https://stdpopsim.readthedocs.io/en/latest/development.html).

The possibility for error and the importance of careful qualty control was illustrated very clearly

during our own development process: while carrying out the final revisions of this paper, we noticed

that the OutOfAfrica_3G09 model (Gutenkunst et al., 2009) had not gone through our QC pro-

cess. The subsequent QC revealed that our implementation was in fact slightly wrong—migration

rates had not been set to zero to the European population in the most ancient time period when

there should have only been a single population. This error was propagated from the msprime docu-

mentation, where the model was presented as an illustrative example. A number of studies have

been published using copies of this erroneous example code.

Workflow for analysis of simulated data
To demonstrate the utility of stdpopsim we created Snakemake workflows (Köster and Rahmann,

2012) that perform demographic inference on tree sequence output from our package using a few

common software packages (see Appendix 1—figure 10 for an example workflow). Our choice of

Snakemake allows complete reproducibility of the analyses shown, and all code is available from

https://github.com/popsim-consortium/analysis.

We performed two types of demographic inference. Our first task was to infer effective popula-

tion size over time (denoted NðtÞ). This was done using three software packages: stairwayXplot,

which uses site frequency spectrum information only (Liu and Fu, 2015); MSMC (Schiffels and Durbin,

2014), which is based on the sequentially Markovian coalescent (SMC), run with two different sample

sizes (n ¼ 2; 8); and smc++ (Terhorst et al., 2017), which combines information from the site fre-

quency spectrum with recombination information as in SMC-based methods. No attempt was made

at trying to optimize the analysis from any particular software package, as our goal was not to

benchmark performance of methods but instead show how such benchmarking could be easily done

using the stdpopsim resource. In this spirit, we ran each software package as near to default

parameters as possible. For stairwayXplot, we set the parameters numRunsX=X1 and dimFac-

torX=X5000. For smc++ we used the ‘estimate’ run mode to infer NðtÞ with all other parameters set

to their default values. For MSMC, we used the –fixedRecombination option and used the default

number of iterations.

For the single-population task, we ran human (HomSap) simulations using a variety of models (see

Table 1): OutOfAfricaArchaicAdmixture_5R19, OutOfAfrica_3G09, and a constant-sized

generic model. Each simulation used the HapmapII_GRCh37 genetic map. For D. melanogaster we

estimated NðtÞ from an African sample simulated under the DroMel, African3Epoch_1S16 model

using the Comeron2012_dm6 map. Finally, we ran simulations of A. thaliana genomes using the Ara-

Tha African2Epoch_1H18 model under the Salome2012_TAIR7 map. For each model, three rep-

licate whole genomes were simulated and the population size estimated from those data. In all

cases, we set the sample size of the focal population to N ¼ 50 chromosomes.

Following simulation, low-recombination portions of chromosomes were masked from the analysis

in a manner that reflects the ‘accessible’ subset of sites used in empirical population genomic studies
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(e.g. Danecek et al., 2011; Langley et al., 2012). Specifically we masked all regions of 1 cM or

greater in the lowest 5th percentile of the empirical distribution of recombination, regions which are

nearly uniformly absent for empirical analysis. This approach to masking was chosen to prevent mar-

ginal trees with low or no recombination from biasing the comparisons of demographic inference

methods. It should be noted that masking is not implemented within stdpopsim proper; tree

sequences generated by stdpopsim are always raw and unmasked. This allows users the flexibility

to implement masking approaches that are specific to their needs for downstream analysis.

Our second task was to explore inference with two-population models using some of the multi-

population demographic models implemented in stdpopsim. For HomSap, we used the OutOfA-

frica_3G09 model with the HapmapII_GRCh37 genetic map, and for DroMel we used the OutO-

fAfrica_2L06 model with the Comeron2012_dm6 map. The HomSap model is a three population

model (Africa, Europe, and Asia) including post-divergence migration and exponential growth

(Figure 4C), whereas the DroMel model is a two population model (Africa and Europe) with no post-

divergence migration and constant population sizes (Appendix 1—figure 8).

To conduct inference on these models, we applied three commonly used methods:

qaqi(Gutenkunst et al., 2009), fastsimcoal2 (Excoffier et al., 2013), and smc++ (Terhorst et al.,

2017). As above, these methods were used generally with default settings and we did not attempt

to optimize their performance or fit parameter-rich demographic models.

For both qaqi and fastsimcoal2, we fit a two population isolation-with-migration (IM) model

with constant population sizes. This IM model contains six parameters: the ancestral population size,

the sizes of each population after the split, the divergence time, and two migration rate parameters.

Importantly, this meant that for both species, the fitted model did not match the simulated model

(Figure 4 and Appendix 1—figure 8). In the HomSap case, we therefore performed inference solely

on the Africa and Europe populations, meaning that the Asia population functioned as a ‘ghost’

population that was ignored by our inference. To validate our inference approach, we also con-

ducted inference on a generic IM model that was identical to the model used for inference (Appen-

dix 1—figure 11).

From HomSap simulations, we took 20 whole genome samples each from the Europe and Africa

populations from each replicate. Runtimes of DroMel simulations were prohibitively slow when simu-

lating whole genomes with the Comeron2012_dm6 map due to large effective population sizes lead-

ing to high effective recombination rates. For this reason, we present only data from 50 samples of a

3 MB region of chromosome 2R from simulations under OutOfAfrica_2L06. For the generic IM

simulations, we used the HomSap genome along with the HapmapII_GRCh37 genetic map and sam-

pled 20 individuals from each population.

Following simulation, we output tree sequences and masked low-recombination regions using the

same approach described for the single population workflow above. We converted tree sequences

into a two-dimensional site frequency spectrum for all chromosomes in the appropriate format for

qaqi and fastsimcoal2. For each simulation replicate, we performed 10 runs of qaqi and fast-

simcoal2, checking to ensure that each method reached convergence.

Detailed settings for qaqi and fastsimcoal2 can be found in the Snakefile on our git repository

(https://github.com/popsim-consortium/analysis). Estimates from the highest log-likelihood (out of

10 runs) for each simulation replicate are shown in Figure 4C and Appendix 1—figure 8C.

For smc++, we converted the tree sequences into VCF format and performed inference with

default settings. Importantly, smc++ assumes no migration post-divergence, deviating from the sim-

ulated model. However, because smc++ allows for continuous population size changes, it is better

equipped to capture many of the more complex aspects of the simulated demographic models (e.g.

exponential growth).

To visualize our results, we plotted the inferred population size trajectories for each simulation

replicate alongside the simulated population sizes (Figure 4C and Appendix 1—figure 8C). Here,

unlike the single-population workflow, we compare our inferred population sizes only to the simu-

lated population sizes and not the inverse coalescence rates.

Resource availability
The stdpopsim package is available for download on the Python Package Index: https://pypi.org/

project/stdpopsim/. Documentation for the project can be found here: https://stdpopsim.readthe-

docs.io/en/latest/.
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Appendix 1

Calculating coalescence rates
In population genetics, the ‘effective population size’ of a population model with constant (census)

size is often defined to be the number of diploids in a Wright-Fisher population that would have the

same coalescence rate (or, equivalently, genetic drift) as the population in question (reviewed in

Crow and Denniston, 1988). One reason the concept is useful is because theory predicts that

genetic data from distinct populations with the same effective population size will look similar in

many ways: for instance, their mean coalescence times will be the same. Conversely, this implies that

effective population size should be easier to infer from genomic data than aspects of population

demography that do not affect effective population size. An analogous observation holds for popu-

lations of changing size, if we define the ‘coalescence rate’ of a given demographic model at a par-

ticular point back in time to be the rate of coalescence of remaining lineages and define the

‘coalescence effective size’ at that time, denoted NeðtÞ, so that the coalescence rate at time t in the

past is 1=ð2NeðtÞÞ. With these definitions, any two models with the same effective population size tra-

jectory (NeðtÞ) will have the same distribution of coalescence times. For this reason, we might guess

that if we apply an inference method that assumes a Wright-Fisher population with changing size

through time to a different population model, the inferred demographic history will match the ‘effec-

tive population size history’ defined in this way. These observations and the following calculations

are standard in coalescent theory (see e.g. Wakeley, 2005), but they are provided here for

completeness.

We compute the coalescence rate of a collection of samples in a given demographic model at a

particular point back in time as the expected number of coalescences happening at that time per

unit of time and per pair of as-yet-uncoalesced lineages. More concretely, let pðtÞ denote the proba-

bility that the lineages of a randomly chosen pair of samples have not yet coalesced t units of time

ago, let pðz; tÞ denote the probability that those lineages have not yet coalesced and are furthermore

both in location z, and let Neðz; tÞ be the (effective) diploid population size in location z at the time,

so that 1=ð2Neðz; tÞÞ is the rate of coalescence there. Then, we compute the mean coalescence rate

as

rðtÞ ¼
1

pðtÞ

X

z

pðz; tÞ

2Neðz; tÞ
:

This follows because if we have m diploid samples, and hence
2m

2

� �

lineages, the expected num-

ber of coalescences in location z between times t and tþ dt ago is

2m

2

� �

pðz; tÞ
dt

2Neðz; tÞ
;

and the expected number of pairs of uncoalesced lineages at that time is

2m

2

� �

pðtÞ:

The expression for rðtÞ is a ratio of these two quantities; to obtain it we need to compute pðtÞ and

pðz; tÞ. This is relatively straightforward using the general theory of Markov chains (e.g,.

Kemeny et al., 2012), and is implemented in msprime.

Note that since these quantities are per pair of lineages, this definition depends on the locations

of the samples. The coalescence rate also has the intuitive interpretation that it is the average

between-lineage coalescence rate, averaged over where uncoalesced lineages might be. Since the

local coalescence rate is the inverse of the population size, 1=rðtÞ (as shown for instance in Figure 2)

is a weighted harmonic mean of the census sizes of the different populations present at that time.

This is as expected: suppose that we have two populations, one big and one small, connected by

migration. If all our samples are from the big population, the number of recent coalescences should

be small, reflecting the large population size, while in the long run, the coalescence rate approaches

an intermediate rate. On the other hand, more recent coalescences are expected if all samples are
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from the small population, A method that fits a single, time-varying population size to the data

might be expected to find a population size trajectory to match these time-varying rates of

coalescence.

We use the same computations to analytically compute mean coalescence times: since for any

nonnegative random variable T , the mean value is E½T� ¼
R

¥

0
PfT>tgdt, we can obtain the mean coa-

lescence time as

Z

¥

0

pðtÞdt;

where pðtÞ is defined above.

The coalescence rate trajectories can be computed from a model in msprime using the coales-

cence_rate_trajectory method of the Demography Debugger class, which can be obtained

from a stdpopsim model using the model.get_demography_debugger() method.

Appendix 1—figure 1. Validating the SLiM engine backend under a genetic map. Here, we validate

our integration of the SLiM (Haller et al., 2019; Haller and Messer, 2019) engine backend. We

show quantile-quantile plots between SLiM and msprime engines for three population genetic

summary statistics: r2, Tajima’s p, and Tajima’s D. Additionally, we show runtimes for generating

each simulation replicate. Data were generated by simulating 100 replicates of human chromosome

22 under the AncientEurasia_9K19 model (Kamm et al., 2019) using the HapMapII_GRCh37

genetic map (Frazer et al., 2007). 12 samples were drawn from each population (excluding basal

Eurasians). From top to bottom, we show results using three scaling factors for the population sizes:

Q = 1, Q = 10, and Q = 50. Kolmogorov-Smirnov two-sample test statistics (D) and p-values are

shown, testing the null hypothesis that the quantiles were drawn from the same continuous

distribution.
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Appendix 1—figure 2. Validating the SLiM engine backend under uniform recombination. Here, we

validate our integration of the SLiM (Haller et al., 2019; Haller and Messer, 2019) engine backend.

We show quantile-quantile plots between SLiM and msprime engines for three population genetic

summary statistics: r2, Tajima’s p, and Tajima’s D. Additionally, we show runtimes for generating

each simulation replicate. Data were generated by simulating 100 replicates of human chromosome

22 under the AncientEurasia_9K19 model (Kamm et al., 2019) using a uniform rate of

recombination across the chromosome. 12 samples were drawn from each population (excluding

basal Eurasians). From top to bottom, we show results using three scaling factors for the population

sizes: Q = 1, Q = 10, and Q = 50. Kolmogorov-Smirnov two-sample test statistics (D) and p-values

are shown, testing the null hypothesis that the quantiles were drawn from the same continuous

distribution.

Appendix 1—figure 3. Comparing simulated population sizes and inverse coalescence rates in

humans. Data are shown from human genomes under the OutOfAfricaArchaicAdmixture_5R19

model (Ragsdale and Gravel, 2019) and using the HapMapII_GRCh37 genetic map (Frazer et al.,

2007). From left to right, we show sizes for each of the three populations in the model: YRI, CEU,

and CHB. We plot the simulated sizes for each population in black, and in red we plot inverse

coalescence rates as calculated from the demographic model used for simulation (see text). In this

specific model, these two measures are near identical, but in other models with higher migration

rates we expect to see a larger departure between the two.
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Appendix 1—figure 4. Comparing estimates of NðtÞ in humans. Estimates of population size over

time (NðtÞ) inferred using four different methods, smc++,XstairwayXplot, and MSMC with n ¼ 2

and n ¼ 8. Data were generated by simulating replicate human genomes under the

OutOfAfrica_3G09 model (Gutenkunst et al., 2009) and using the HapMapII_GRCh37 genetic map

(Frazer et al., 2007). From top to bottom, we show estimates for each of the three populations in

the model: YRI, CEU, and CHB. In shades of blue, we show the estimated NðtÞ trajectories for each

replicate. As a proxy for the ‘truth’, in black we show inverse coalescence rates as calculated from

the demographic model used for simulation (see text).
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Appendix 1—figure 5. Comparing estimates of NðtÞ in humans. Here, we show estimates of

population size over time (NðtÞ) inferred using fourdifferent methods, smc+, and stairwayXplot,

and MSMC with n ¼ 2 and n ¼ 8. Data were generated by simulating replicate human genomes under

a constant sized population model with N ¼ 10
4 and using the HapMapII_GRCh37 genetic map

(Frazer et al., 2007). As a proxy for the ‘truth’, in black we show inverse coalescence rates as

calculated from the demographic model used for simulation (see text).

Appendix 1—figure 6. Comparing estimates of NðtÞ in A. thaliana. Here, we show estimates of

population size over time (NðtÞ) inferred using four different methods, smc++, and stairwayXplot,

and MSMC with n ¼ 2 and n ¼ 8. Data were generated by simulating replicate A. thaliana genomes

under the African2Epoch_1H18 model (Durvasula et al., 2017) and using the

SalomeAveraged_TAIR7 genetic map (Salomé et al., 2012). As a proxy for the ‘truth’, in black we

show inverse coalescence rates as calculated from the demographic model used for simulation (see

text).
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Appendix 1—figure 7. Migration rate estimates for the human Gutenkunst model. Here, we show

inferred migration rates from qaqi and fastsimcoal2. Data were generated by simulating

replicate human genomes under the Gutenkunst et al., 2009 model and using the genetic map

inferred in Frazer et al., 2007. Directional migration from Europe to Africa is represented as

MIG AF EU and migration from Africa to Europe is represented as MIG EU AF. Note that the x-axis

coordinates are arbitrary.
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Appendix 1—figure 8. Parameters estimated using a two-population Drosophila model. Here, we

show estimates of NðtÞ inferred using qaqi, fastsimcoal2, and smc++. Data were generated by

simulating replicate Drosophila genomes under the Li and Stephan, 2006 model and using the

genetic map inferred in Comeron et al., 2012. See legend of Figure 4 for details. In shades of blue,

we show the estimated NðtÞ trajectories for each replicate. In black we show the simulated

population sizes.
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Appendix 1—figure 9. Migration rate parameters estimated under a two-population Drosophila

model. Here, we show inferred migration rates from qaqi and fastsimcoal2. Data were generated

by simulating replicate Drosophila genomes under the Li and Stephan, 2006 model and using the

genetic map inferred in Comeron et al., 2012. Directional migration from Europe to Africa is

represented as MIG AF EU and migration from Africa to Europe is represented as MIG EU AF. Note

that the x-axis coordinates are arbitrary.
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Appendix 1—figure 10. Workflow for our N(t) inference methods comparison. Here, we show

single replicate for two chromosomes, chr22 and chrX, simulated under the HomSap

OutOfAfrica_3G09 demographic model, with a HapmapII_GRCh37 genetic map. Note that the data

used as input by all inference methods smc++,XMSMC, and stairwayXplot, come from the same

set of simulations.
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Appendix 1—figure 11. Parameters estimated from a generic IM model Here we show estimates of

NðtÞ inferred using qaqi, fastsimcoal2, and smc++. Data were generated by simulating under a

generic IM model with a human genome and Frazer et al., 2007 genetic map. In shades of blue we

show the estimated NðtÞ trajectories for each replicate. In black we show the simulated population

sizes.
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