44 research outputs found
Atomically-thin micas as proton conducting membranes
Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable
to thermal protons. For thicker two-dimensional (2D) materials, proton
conductivity diminishes exponentially so that, for example, monolayer MoS2 that
is just three atoms thick is completely impermeable to protons. This seemed to
suggest that only one-atom-thick crystals could be used as proton conducting
membranes. Here we show that few-layer micas that are rather thick on the
atomic scale become excellent proton conductors if native cations are
ion-exchanged for protons. Their areal conductivity exceeds that of graphene
and hBN by one-two orders of magnitude. Importantly, ion-exchanged 2D micas
exhibit this high conductivity inside the infamous gap for proton-conducting
materials, which extends from 100 C to 500 C. Areal conductivity of
proton-exchanged monolayer micas can reach above 100 S cm-2 at 500 C, well
above the current requirements for the industry roadmap. We attribute the fast
proton permeation to 5 A-wide tubular channels that perforate micas' crystal
structure which, after ion exchange, contain only hydroxyl groups inside. Our
work indicates that there could be other 2D crystals with similar nm-scale
channels, which could help close the materials gap in proton-conducting
applications
Eight-month-old infants’ behavioural responses to peers’ emotions as related to the asymmetric frontal cortex activity
Infants are sensitive to and converge emotionally with peers’ distress. It is unclear whether these responses extend to positive affect and whether observing peer emotions motivates infants’ behaviors. This study investigates 8-month-olds’ asymmetric frontal EEG during peers’ cry and laughter, and its relation to approach and withdrawal behaviors. Participants observed videos of infant crying or laughing during two separate sessions. Frontal EEG alpha power was recorded during the first, while infants’ behaviors and emotional expressions were recorded during the second session. Facial and vocal expressions of affect suggest that infants converge emotionally with their peers’ distress, and, to a certain extent, with their happiness. At group level, the crying peer elicited right lateralized frontal activity. However, those infants with reduced right and increased left frontal activity in this situation, were more likely to approach their peer. Overall, 8-month-olds did not show asymmetric frontal activity in response to peer laughter. But, those infants who tended to look longer at their happy peer were more likely to respond with left lateralized frontal activity. The link between variations in left frontal activity and simple approach behaviors indicates the presence of a motivational dimension to infants’ responses to distressed peers