10,252 research outputs found

    Major Galaxy Mergers Only Trigger the Most Luminous AGN

    Full text link
    Using multiwavelength surveys of active galactic nuclei across a wide range of bolometric luminosities (10^{43}<L_{bol}(erg/s<5x10^{46}) and redshifts (0<z<3), we find a strong, redshift-independent correlation between the AGN luminosity and the fraction of host galaxies undergoing a major merger. That is, only the most luminous AGN phases are connected to major mergers, while less luminous AGN appear to be driven by secular processes. Combining this trend with AGN luminosity functions to assess the overall cosmic growth of black holes, we find that ~50% by mass is associated with major mergers, while only 10% of AGN by number, the most luminous, are connected to these violent events. Our results suggest that to reach the highest AGN luminosities -where the most massive black holes accreted the bulk of their mass - a major merger appears to be required. The luminosity dependence of the fraction of AGN triggered by major mergers can successfully explain why the observed scatter in the M-\sigma relation for elliptical galaxies is significantly lower than in spirals. The lack of a significant redshift dependence of the L_{bol}-f_{merger} relation suggests that downsizing, i.e., the general decline in AGN and star formation activity with decreasing redshift, is driven by a decline in the frequency of major mergers combined with a decrease in the availability of gas at lower redshifts.Comment: Accepted for publication by Astrophysical Journal Letters, 6 pages in emulateapj format, 3 figure

    Combinatorial Bounds and Characterizations of Splitting Authentication Codes

    Full text link
    We present several generalizations of results for splitting authentication codes by studying the aspect of multi-fold security. As the two primary results, we prove a combinatorial lower bound on the number of encoding rules and a combinatorial characterization of optimal splitting authentication codes that are multi-fold secure against spoofing attacks. The characterization is based on a new type of combinatorial designs, which we introduce and for which basic necessary conditions are given regarding their existence.Comment: 13 pages; to appear in "Cryptography and Communications

    Spin-dependent transport in molecular tunnel junctions

    Full text link
    We present measurements of magnetic tunnel junctions made using a self-assembled-monolayer molecular barrier. Ni/octanethiol/Ni samples were fabricated in a nanopore geometry. The devices exhibit significant changes in resistance as the angle between the magnetic moments in the two electrodes is varied, demonstrating that low-energy electrons can traverse the molecular barrier while maintaining spin coherence. An analysis of the voltage and temperature dependence of the data suggests that the spin-coherent transport signals can be degraded by localized states in the molecular barriers.Comment: 4 pages, 5 color figure

    An Over-Massive Black Hole in a Typical Star-Forming Galaxy, 2 Billion Years After the Big Bang

    Get PDF
    Supermassive black holes (SMBHs) and their host galaxies are generally thought to coevolve, so that the SMBH achieves up to about 0.2 to 0.5% of the host galaxy mass in the present day. The radiation emitted from the growing SMBH is expected to affect star formation throughout the host galaxy. The relevance of this scenario at early cosmic epochs is not yet established. We present spectroscopic observations of a galaxy at redshift z = 3.328, which hosts an actively accreting, extremely massive BH, in its final stages of growth. The SMBH mass is roughly one-tenth the mass of the entire host galaxy, suggesting that it has grown much more efficiently than the host, contrary to models of synchronized coevolution. The host galaxy is forming stars at an intense rate, despite the presence of a SMBH-driven gas outflow.Comment: Author's version, including the main paper and the Supplementary Materials (16+21 pages, 3+3 figures

    Probing Red Giant Atmospheres with Gravitational Microlensing

    Get PDF
    Gravitational microlensing provides a new technique for studying the surfaces of distant stars. Microlensing events are detected in real time and can be followed up with precision photometry and spectroscopy. This method is particularly adequate for studying red giants in the Galactic bulge. Recently we developed an efficient method capable of computing the lensing effect for thousands of frequencies in a high-resolution stellar spectrum. Here we demonstrate the effects of microlensing on synthesized optical spectra of red giant model atmospheres. We show that different properties of the stellar surface can be recovered from time-dependent photometry and spectroscopy of a point-mass microlensing event with a small impact parameter. In this study we concentrate on center-to-limb variation of spectral features. Measuring such variations can reveal the depth structure of the atmosphere of the source star.Comment: 23 pages with 11 Postscript figures, submitted to ApJ; Section 2 expanded, references added, text revise

    Fermi-liquid behaviour of the low-density 2D hole gas in GaAs/AlGaAs heterostructure at large values of r_s

    Full text link
    We examine the validity of the Fermi-liquid description of the dilute 2D hole gas in the crossover from 'metallic'-to-'insulating' behaviour of R(T).It has been established that, at r_s as large as 29, negative magnetoresistance does exist and is well described by weak localisation. The dephasing time extracted from the magnetoresistance is dominated by the T^2 -term due to Landau scattering in the clean limit. The effect of hole-hole interactions, however, is suppressed when compared with the theory for small r_s.Comment: 4 pages ReVTeX, 4 ps figure
    • …
    corecore