500 research outputs found

    Effective mass theory of monolayer \delta-doping in the high-density limit

    Full text link
    Monolayer \delta-doped structures in silicon have attracted renewed interest with their recent incorporation into atomic-scale device fabrication strategies as source and drain electrodes and in-plane gates. Modeling the physics of \delta-doping at this scale proves challenging, however, due to the large computational overhead associated with ab initio and atomistic methods. Here, we develop an analytical theory based on an effective mass approximation. We specifically consider the Si:P materials system, and the limit of high donor density, which has been the subject of recent experiments. In this case, metallic behavior including screening tends to smooth out the local disorder potential associated with random dopant placement. While smooth potentials may be difficult to incorporate into microscopic, single-electron analyses, the problem is easily treated in the effective mass theory by means of a jellium approximation for the ionic charge. We then go beyond the analytic model, incorporating exchange and correlation effects within a simple numerical model. We argue that such an approach is appropriate for describing realistic, high-density, highly disordered devices, providing results comparable to density functional theory, but with greater intuitive appeal, and lower computational effort. We investigate valley coupling in these structures, finding that valley splitting in the low-lying \Gamma band grows much more quickly than the \Gamma-\Delta band splitting at high densities. We also find that many-body exchange and correlation corrections affect the valley splitting more strongly than they affect the band splitting

    Superspreading on hydrophobic substrates:effect of glycerol additive

    Get PDF
    The spreading of solutions of three trisiloxane surfactants on two hydrophobic substrates, polyethylene and polyvinylidenefluoride, was studied with the addition of 0–40 mass % of glycerol. It was found that all the surfactant solutions spread faster than silicone oil of the same viscosity, confirming the existence of a mechanism which accelerates the spreading of the surfactant solutions. For the non-superspreading surfactant, BT-233, addition of glycerol improved the spreading performance on polyvinylidenefluoride and resulted in a transition from partial to complete wetting on polyethylene. The fastest spreading was observed for BT-233 at a concentration of 2.5 g/L, independent of glycerol content. For the superspreading surfactants, BT-240 and BT-278, the concentration at which the fastest spreading occurs systematically increased with concentration of glycerol on both substrates from 1.25 g/L for solutions in water to 10 g/L for solutions in 40% glycerol/water mixture. Thus, the surfactant equilibration rate (and therefore formation of surface tension gradients) and Marangoni flow are important components of a superspreading mechanism. De-wetting of the solutions containing glycerol, once spread on the substrates, resulted in the formation of circular drop patterns. This is in contrast to the solely aqueous solutions where the spread film shrank due to evaporation, without any visible traces being left behind

    Spreading of aqueous surfactant solutions on oil substrates: Superspreaders vs non-superspreaders

    Get PDF
    HypothesisThe question of why aqueous solutions of some surfactants demonstrate a rapid spreading (superspreading) over hydrophobic solid substrates, while solutions of other similar surfactants do not, has no definitive explanation despite numerous previous studies. The suggested hypothesis for this study assumes that once the spreading coefficient of surfactant is positive, there is a concentration range for solutions of any surfactant which demonstrates rapid spreading. As it is impossible to calculate spreading coefficients for solid substrates, we compare the spreading performance of known superspreaders and non-superspreaders on liquid (oil) substrate.ExperimentsThe kinetics of spreading of aqueous solutions of a series of branched ionic surfactants and non-ionic trisiloxane surfactants on two liquid substrates was studied and compared with the spreading of a surfactant-free liquid, silicone oil. Both dynamic and equilibrium spreading coefficients were calculated using measured surface and interfacial tensions.FindingsThere is no difference in spreading rate on liquid substrate between solutions of surfactants proven as superspreaders (while spreading on solid substrate) or non-superspreaders. A rapid spreading (superspreading) with the characteristic rate of spreading O(102–103) mm2/s occurs if the dynamic spreading coefficients exceeds the positive threshold value. If the dynamic spreading coefficient is negative or slightly positive, complete wetting still occurs, but the spreading is slow with the spreading rate is O(1) mm2/s. Spreading exponents for surfactant solutions in the rapid spreading regime are considerably larger than for the surfactant-free liquid. A number of spreading and dewetting patterns were observed depending on the surfactant type, its concentration and substrate

    Non-pathogenic Escherichia coli biofilms: effects of growth conditions and surface properties on structure and curli gene expression

    Get PDF
    Biofilm formation is a harmful phenomenon in many areas, such as in industry and clinically, but offers advantages in the field of biocatalysis for the generation of robust biocatalytic platforms. In this work, we optimised growth conditions for the production of Escherichia coli biofilms by three strains (PHL644, a K-12 derivative with enhanced expression of the adhesin curli; the commercially-used strain BL21; and the probiotic Nissle 1917) on a variety of surfaces (plastics, stainless steel and PTFE). E. coli PHL644 and PTFE were chosen as optimal strain and substratum, respectively, and conditions (including medium, temperature, and glucose concentration) for biofilm growth were determined. Finally, the impact of these growth conditions on expression of the curli genes was determined using flow cytometry for planktonic and sedimented cells. We reveal new insights into the formation of biofilms and expression of curli in E. coli K-12 in response to environmental conditions

    Phylogeny of Celastraceae (spindle-tree family) subfamilies Hippocrateoideae and Salacioideae inferred from chloroplast and nuclear genes

    Get PDF
    The phylogeny of Celastraceae (the spindle-tree family) subfamilies Hippocrateoideae and Salacioideae, which include about 360 species of shrubs, trees, and vines in 25 genera, was inferred using plastid (matK, trnL-F) and nuclear (ITS and 26S rDNA) genes. Together, subfamilies Hippocrateoideae and Salacioideae contain all members of the former Hippocrateaceae, which are now recognized as a derived group within Celastraceae sensu stricto. Based on our results, Brassiantha, a monotypic genus endemic to New Guinea, is more closely related to the clade of Dicarpellum (New Caledonia) and Hypsophila (Queensland, Australia) than it is to the former Hippocrateaceae, in contrast to previous studies. This well supported resolution indicates that having a nectary disk positioned outside the stamens has been convergently derived in these two separate lineages. The clade of Kokoona and Lophopetalum was resolved as sister to the clade of Hippocrateoideae, Sarawakodendron, and Salacioideae. This resolution of Kokoona and Lophopetalum supports previous assertions that they are a "transitional link" between Celastraceae sensu stricto and the former Hippocrateaceae. Sarawakodendron, a monotypic genus endemic to Borneo, was resolved as sister to the clade of Salacioideae, which supports earlier assertions that Sarawakodendron is "transitional" between Kokoona, Lophopetalum, and Salacioideae. Based on our inferred phylogeny, arils as mucilaginous pulp are derived within Salacioideae and winged arils may be primitive within the former Hippocrateaceae as a whole. Finally, the former Hippocrateaceae had an Old World, rather than a New World, origin.College Honors

    Effects of Invasive Winter Moth Defoliation on Tree Radial Growth in Eastern Massachusetts, USA

    Get PDF
    Winter moth, Operophtera brumata L. (Lepidoptera: Geometridae), has been defoliating hardwood trees in eastern Massachusetts since the 1990s. Native to Europe, winter moth has also been detected in Rhode Island, Connecticut, eastern Long Island (NY), New Hampshire, and Maine. Individual tree impacts of winter moth defoliation in New England are currently unknown. Using dendroecological techniques, this study related annual radial growth of individual host (Quercus spp. and Acer spp.) trees to detailed defoliation estimates. Winter moth defoliation was associated with up to a 47% reduction in annual radial growth of Quercus trees. Latewood production of Quercus was reduced by up to 67% in the same year as defoliation, while earlywood production was reduced by up to 24% in the year following defoliation. Winter moth defoliation was not a strong predictor of radial growth in Acer species. This study is the first to document impacts of novel invasions of winter moth into New England

    Engineering biofilms for biocatalysis

    Get PDF
    Biofilm, friend not foe: Single species biofilms can be engineered to form robust biocatalysts with greater catalytic activity and significantly improved catalytic longevity than purified and immobilised enzymes. We report the engineering, structural analysis and biocatalytic capability of a biofilm that can mediate the conversion of serine and haloindoles to halotryptophans
    • …
    corecore