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Abstract: Winter moth, Operophtera brumata L. (Lepidoptera: Geometridae), has been 

defoliating hardwood trees in eastern Massachusetts since the 1990s. Native to Europe, 

winter moth has also been detected in Rhode Island, Connecticut, eastern Long Island 

(NY), New Hampshire, and Maine. Individual tree impacts of winter moth defoliation in 

New England are currently unknown. Using dendroecological techniques, this study related 

annual radial growth of individual host (Quercus spp. and Acer spp.) trees to detailed 

defoliation estimates. Winter moth defoliation was associated with up to a 47% reduction 

in annual radial growth of Quercus trees. Latewood production of Quercus was reduced by 

up to 67% in the same year as defoliation, while earlywood production was reduced by up 

to 24% in the year following defoliation. Winter moth defoliation was not a strong 

predictor of radial growth in Acer species. This study is the first to document impacts of 

novel invasions of winter moth into New England. 
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OPEN ACCESS 



Insects 2014, 5 302 

 

 

1. Introduction 

Winter moth, Operophtera brumata L. (Lepidoptera: Geometridae), has been responsible for 

widespread defoliation of trees (e.g., 36,000 ha in 2011) in Massachusetts for over a decade [1]. Native 

to Europe, winter moth was identified in southeastern Massachusetts in 2003 and is believed to have 

been responsible for heavy defoliation since the 1990s [2]. The distribution of winter moth in 

Massachusetts is expanding and, since its initial detection in 2003, it has been detected throughout 

much of eastern Massachusetts and portions of Rhode Island, Connecticut, eastern Long Island (NY), 

New Hampshire, and Maine [2]. The biological extent of winter moth in New England is now 

comparable to that of the burgeoning gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae) 

population in the early 1900s [3,4]. In portions of its range in New England where it is well-established, 

winter moth may now dominate the spring defoliator guild that includes fall cankerworm, Alsophila 

pometaria Harris (Lepidoptera: Geometridae), Bruce spanworm, O. bruceata Hulst (Lepidoptera: 

Geometridae), forest tent caterpillar, Malacosoma disstria Hübner (Lepidoptera: Lasiocampidae), and 

gypsy moth. 

Winter moth is an important and well-studied defoliator in European forests [5–7]. While recently 

discovered in Massachusetts, previous invasions of winter moth have occurred in North America, with 

introductions in Nova Scotia in the early 1930s [8] and the Pacific Northwest in the 1950s [9,10]. 

Winter moth feeds on a variety of hardwood trees and shrubs in its native and exotic ranges and can be 

a serious pest of orchards, landscape trees, and deciduous forests [8,11,12]. In Nova Scotia, winter 

moth defoliates Malus spp., Quercus rubra L., Ulmus americana L., Acer rubrum L., Tilia americana L., 

and Ostrya virginiana (Mill.) K. Koch, as well as other deciduous tree species [13]. In Massachusetts, 

heavy winter moth defoliation has been observed (by the current authors) on several tree species 

including Quercus, Acer, and Betula species, among others, however the impact of this novel 

defoliation to radial growth has not yet been documented in the primary literature. 

Winter moth is an early-season defoliator that feeds in the expanding buds and leaves of its 

hardwood host [6]. The life history of winter moth in New England is similar to that in Nova Scotia 

and Europe. Briefly, winter moth is a univoltine species that overwinters as an egg; larval eclosion 

typically occurs in April and larvae feed in the expanding buds and later on the foliage for 

approximately six weeks, with much of the damage often occurring inside the buds prior to leaf 

expansion. Pupation occurs in the soil beginning in mid- to late May. Adults emerge from the soil in 

late fall to early winter, when, upon mating, the flightless female lays eggs in bark crevices and on 

branches of selected host trees [13,14]. Host preference and the level of defoliation associated with 

winter moth larval feeding is largely determined by the degree of synchrony between budburst and 

larval eclosion [6,15,16]. 

The effects of winter moth defoliation on host tree radial growth have been studied in its native and 

exotic ranges. In England, Varley and Gradwell [5] found a radial growth reduction in Quercus robur 

L. trees defoliated by winter moth and the green oak leaf roller, Tortrix viridana L. (Lepidoptera: 

Tortricidae). Tikkanen and Roininen [7] found a radial growth reduction in Prunus padus L.,  

Sorbus aucuparia L., and Populus tremula L. trees defoliated by winter moth in eastern Fennoscandia. 

In Nova Scotia, where a prolonged outbreak was eventually controlled by the release of biological 

control agents [11], winter moth defoliation reduced radial growth and basal area of Q. rubra [17], and 
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repeated defoliation caused decline and mortality of this species [13]. This study is the first to 

document the radial growth impacts of the novel invasion of winter moth in New England and builds 

on the observations of Varley and Gradwell [5] in which the authors found a negative relationship 

between Q. robur latewood growth and the combined density of winter moth and the green oak leaf 

roller. Whereas Varley and Gradwell [5] indirectly related insect defoliation—using insect density as a 

surrogate—to intra-annual (i.e., earlywood and latewood) variation in radial growth, our study directly 

relates rigorous estimates of actual winter moth defoliation to total, earlywood, and latewood radial 

growth of Quercus spp. and Acer spp. trees. 

Dendroecology, the analysis of annual wood rings, is an effective tool used in the study of 

biological invasions [18,19] and dendroecological techniques have been used to elucidate the effects of 

insect defoliation on tree radial growth [20]. Measuring the effect of defoliation on radial growth of 

host trees is a logical step when gauging the potential impacts of novel invasions of forest defoliators, 

as radial growth can be used as a predictor of tree mortality [21,22].  

Understanding the influence of winter moth defoliation intensity on tree growth in Massachusetts 

will provide important information on the threat of winter moth invasions in New England hardwood 

forests, while also providing guidance to pest management strategies. The objective of this study was 

to estimate the impact of winter moth defoliation intensity on the radial growth of defoliated host trees 

using analysis of tree cores. To meet this objective we took advantage of defoliation data collected 

from a previous study. Beginning in 2004 [23], individual trees were selected to document the 

population ecology of winter moth throughout its burgeoning outbreak in Massachusetts. Among the 

data collected were estimates of defoliation on specific trees attributable to winter moth and the 

availability of these data allowed the present study to proceed. In 2011, tree cores were extracted from 

the individual trees from which defoliation estimates were collected and radial growth patterns of these 

cores were related to these annual estimates of winter moth defoliation. 

2. Methods  

2.1. Winter Moth Defoliation Sampling 

Eastern Massachusetts is part of the Northeastern Coastal Zone ecoregion [24] and comprises the 

southern New England Coastal Plain, Bristol Lowlands, and Boston Basin ecological subregions [24,25]. 

Eastern Massachusetts is defined by a mosaic of urban areas and State and private forests dominated 

by Quercus, Acer, and Pinus [24]. Soils in this region are predominantly Inceptisols and Entisols [25] 

formed mostly on acidic sedimentary, acidic granitic, and mafic/intermediate granitic bedrock [24].  

Annual levels of winter moth defoliation were quantified (percent leaf area removed by larval 

feeding) from 2004–2010 on seven long-term winter moth study trees that spanned the area infested by 

winter moth in eastern Massachusetts and included Q. rubra, Q. velutina L., A. rubrum, and  

A. saccharum Marsh (Table 1). The locations of the trees used for this study varied from private house 

lots with individual open-grown trees, to trees at the edge of forested tracts. Sites were selected by 

University of Massachusetts, Amherst (UMass) researchers in 2004, following the 2003 confirmation 

of winter moth in Massachusetts. Study trees were selected so as to (1) be spread out across the area 

infested by winter moth; (2) include A. rubrum, Q. rubra or Q. velutina; and (3) have no prospect of 
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pesticide application to control winter moth or any other defoliator. To our knowledge, trees received 

no supplemental water nor were they fertilized during the sample period. Trees were selected based on 

ease of access to crowns to facilitate successful winter moth life stage (including egg and larval 

counts) and defoliation sampling (access for pole pruners). Although tree sampling began in 2004, 

more trees (at other locations) were added as winter moth spread into new areas.  

Table 1. Location, habitat (open grown, forest, forest edge), species, diameter at breast 

height (DBH; 1.4 m), age, years of winter moth defoliation estimates of ―defoliation trees‖ 

and the number of ring width index (RWI) values (calculated using detrending method;  

see methods Section 2.3) with corresponding percent defoliation estimates in eastern 

Massachusetts, USA. Number of RWI values vs. % defoliation estimates determined by 

subtracting the first year of defoliation estimates per tree in order to match models 

evaluating previous year defoliation estimates (see Methods section for details). 

Tree # Location Habitat Species DBH (cm) Age 
Years w/Defoliation 

Estimates 

# RWI vs. % 

Defoliation 

Quercus 1 Hanson, MA, USA Open Quercus velutina 25.6 15 2004–2010 6 

Acer 1 
 

Open Acer rubrum 53.1 71 2004–2010 6 

Quercus 2 Hanson, MA, USA Edge Quercus rubra 37.6 58 2004–2010 6 

Quercus 3 Hingham, MA, USA Open Quercus rubra 35.1 28 2004–2010 6 

Acer 2 
 

Forest Acer rubrum 24.8 38 2004–2010 6 

Quercus 4 Hingham, MA, USA Open Quercus rubra 29.1 44 2004–2010 6 

Acer 3 
 

Edge Acer rubrum 34.2 43 2004–2010 6 

Quercus 5 Wellesley, MA, USA Edge Quercus velutina 22.6 50 2008–2010 2 

Acer 4 
 

Edge Acer saccharum 19.5 45 2009–2010 1 

Quercus 6 Wenham, MA, USA Open Quercus velutina 30.8 21 2006–2010 4 

Acer 5 
 

Open Acer rubrum 34.4 34 2006–2010 4 

Quercus 7 West Bridgewater, MA, USA Open Quercus rubra 37.6 27 2004–2005 1 

Quercus 8 
 

Open Quercus rubra 40.7 22 2004–2010 6 

Acer 6 
 

Edge Acer rubrum 26.7 45 2004–2010 6 

Each year in late May or early June when winter moth feeding had finished and the larvae had 

pupated, pole pruners were used to cut leaf clusters from throughout the canopy of each sample tree. 

An effort was made to sample leaves throughout the canopy to capture the overall level of defoliation. 

Thirty leaves were selected from the leaf clusters and these were dried and pressed for later analysis. 

Percent defoliation was estimated by visually rating each leaf on a 10-class scale (0–10%,  

11%–20% ... 91%–100%) and averages were computed for the 30 leaves from each tree. Estimates of 

leaf re-flushing were not included in the study. Except in extreme cases in which winter moth 

defoliation results in 100% removal of the leaf, winter moth larvae often consume a varying 

percentage of the leaf tissue. Thus, percentage of leaf lost to defoliation is an appropriate metric for 

winter moth defoliation, as opposed to overall leaf area reduction as has been used in studies of other 

defoliators, e.g., [26]. While other defoliators, including gypsy moth and forest tent caterpillar, were 

present in the region during the early years (2004–2006) of the population ecology study, these 

defoliators were never abundant on the sample trees and winter moth was invariably the most abundant 

defoliator during this time period. 
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2.2. Increment Core Collection 

There were three categories of trees selected for radial growth analysis, (1) defoliation trees;  

(2) cross-dating trees and; (3) control trees. Defoliation trees were the same trees on which defoliation 

levels were previously estimated and included five Q. rubra, three Q. velutina, six A. rubrum and one 

A. saccharum trees. Two increment cores, separated by at least 60°, were extracted from each sample 

tree at breast height (1.4 m) using increment borers; we were unable to extract a viable core from 

Quercus defoliation tree number 3; thus cores for Quercus 3 (Table 1) were extracted from a  

Q. rubra growing directly adjacent to the tree on which defoliation estimates were collected. Location 

of core extraction was based on tree bole orientation and growth form. In addition, to assist in 

subsequent cross-dating of cores, each study tree was paired with a nearby tree of the same species 

from which two cores were also extracted (except for one site, West Bridgewater, which contained two 

Q. rubra defoliation trees and no other Quercus trees; Table 1). These ―cross-dating trees‖ were 

selected to increase the number of trees used in cross-dating of radial growth trends.  

We also cored Pinus strobus L. trees as a ―control species‖, one not fed upon by winter moth. We 

expected that ring widths of the control species would not vary with winter moth defoliation of host 

species. Occurrence of ring width reduction in both host and non-host (control) species, however, 

would suggest the existence of extraordinary environmental variables correlated with winter moth 

activity, weakening the inference that winter moth alone caused the reduction. In contrast, ring width 

reduction in host but not control species would strengthen the inference that winter moth was the 

causal variable. For these control trees, two cores were extracted from two P. strobus trees (herein 

referred to as Pinus) neighboring each ―defoliation tree‖; except at one location, West Bridgewater, in 

which Pinus trees were absent.  

Tree cores were labeled in the field and returned to the lab for preparation and analysis. In total 

(including defoliation trees, cross-dating trees, and control trees), two increment cores per tree were 

sampled from 14 Quercus trees, 14 Acer trees, and 12 Pinus trees from throughout eastern Massachusetts. 

2.3. Core Preparation and Analysis 

Increment cores were stored in paper straws and allowed to dry. Cores were then glued to wooden 

mounts and sanded with progressively finer sandpaper, concluding with a 600-grit. A Velmex 

measurement system (Velmex, East Bloomfield, NY, USA), in combination with Measure J2X v. 4.1.2 

software (VoorTech Consulting, Holderness, NH, USA) was used to measure annual growth ring 

widths to the nearest 0.001 mm. Once measured, cores were visually cross-dated based on event years 

(i.e., years having low growth due to known drought, insect defoliation, etc.; [27,28]) using scatterplots 

created in MS Excel. Cores were cross-dated by species using each of the two core series per tree for 

the defoliation trees and cross-dating trees combined. During cross-dating, the cores from two  

A. rubrum trees (including one defoliation tree and one cross-dating tree from the same site) were 

removed due to rot or unreadable growth rings. The program COFECHA [29] was used to verify  

cross-dating and to assess measurement error. A Pearson critical correlation level of 0.328 (99% 

confidence level) was used as a metric of cross-dating accuracy in which individual cores were 

correlated with the master chronology of the respective species [29]. Individual cores that fell below 
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this level were double-checked and re-measured in an effort to insure measurement accuracy; however, 

an individual correlation with the master chronology below 0.328 did not necessarily preclude the core 

from further analysis if the measurement was deemed accurate. 

Once the entire collection of cores was cross-dated, the cross-dating trees were precluded from 

further analyses and the Q. rubra (n = 5), Q. velutina (n = 3), A. rubrum (n = 5) and A. saccharum  

(n = 1) defoliation trees (trees with quantified defoliation percentages) were used to evaluate 

defoliation impacts on tree radial growth. The Pinus control trees (n = 12) were used to support winter 

moth as a contributing factor to any radial growth trends displayed by host trees. If winter moth 

defoliation was merely correlated with some other extraordinary physical variable that affected host 

species ring width, we would also expect to see a similar response in Pinus radial growth. Thus, we 

regressed Pinus radial growth on the defoliation estimates from neighboring defoliation trees. Quercus 

rubra and Q. velutina belong to the red oak group (Erythrobalanus) and readily hybridize [30]; these 

species were combined for analysis and are herein referred to as Quercus. Acer saccharum was 

combined with A. rubrum for analysis, and are herein referred to as Acer. Therefore, a total of eight 

Quercus, six Acer, and 12 Pinus trees were used to analyze defoliation impacts. The number of trees 

used to estimate defoliation effects is small, a consequence of the cost in time and labor of obtaining 

high quality estimates of defoliation. However, as each tree was examined over multiple years the 

actual number of ring width observations is high (see below). 

In order to remove age-related growth trends in ring width, the raw ring width data of the study 

trees were detrended and converted to a dimensionless ring-width index (RWI) following procedures 

outlined by Bunn [31]. Using the dplR computer package [31] within the R statistical program [32], a 

modified negative exponential curve was fit to the raw ring width data for each core; subsequently, 

these data were detrended within dplR by dividing the annual raw ring widths by the predicted values 

estimated by the fitted modified negative exponential curve. The detrended data for the two cores per 

tree were averaged and provided one average RWI per year per study tree.  

In addition to total annual ring widths, earlywood increment was measured for the Quercus study 

trees in years of known defoliation levels. Quercus are ring-porous tree species; thus, earlywood and 

latewood were identified based on changes in vessel size and wood color [26]. Proportions of each ring 

that were earlywood and latewood were calculated. Detrended earlywood and latewood ring width 

indices (RWI) were calculated by multiplying the respective proportions by the total RWI.  

2.4. Statistical Analysis 

Statistical analyses were performed using the JMP 9.0 software (SAS, Cary, NC, USA). Using 

simple linear regression, the ring width index (RWI) of each tree species group was regressed on tree 

age to evaluate the effectiveness of the detrending technique; the correlation between the two variables 

was assessed by the adjusted r
2
 (r

2
adj) and p-values. This revealed no relationship between tree age and 

RWI, thereby supporting the detrending technique.  

Multicollinearity of regressors was tested using variance inflation factors (VIF). Studentized 

Residuals were calculated to check for the presence of outliers and to test the normality of the response 

variables. In addition, Cook’s D values were calculated to test for influential observations. Subsequently, 

Acer RWI and Pinus RWI were normalized using a 10 × log10 transformation. In addition, the 
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proportions of Quercus earlywood and latewood were normalized using the arcsine square root 

transformation. An influential observation was noted in the Acer RWI data; this point was checked and 

determined to be a valid observation. Statistical analyses performed with, and without, the influential 

observation revealed no change in the results. Thus, the observation in question was retained.  

Multiple regression was used to determine which variables had the greatest effect on ring width 

index (RWI) for Quercus and Acer; for Pinus, we matched the best model for Quercus RWI. We 

hypothesized that winter moth defoliation in the current year, the previous year, and the combination 

of the two years would negatively influence host tree radial growth. Model selection for Quercus and 

Acer RWI was performed using the corrected Akaike Information Criterion (AICc) value [33], wherein 

the model with the lowest AICc value was considered the ―best‖ model in the set of models run for 

each response variable. However, models with AICc simple differences (ΔAICc) values less than or 

equal to two were considered highly competitive models and were retained for discussion.  

The variables tree and year were considered nominal random variables and were entered into 

candidate models as (random effects) covariates to account for random variation due to individual tree 

and site characteristics (tree) and climate (year). Percent current year winter moth defoliation was 

treated as a fixed effect and was defined as the percentage of leaf surface lost by winter moth 

defoliation during a given growing season. For example, the percent winter moth defoliation in the 

year 2008 would correspond with the radial growth increment of 2008. Percent previous year winter 

moth defoliation was also treated as a fixed effect and was defined as the percentage of leaf surface 

lost by winter moth defoliation of a given tree during the previous year growing season. For example, 

the previous year defoliation for the 2008 radial growth increment would be defined as the 2007 winter 

moth defoliation percentage. The effect of the interaction between percent current year winter moth 

defoliation and percent previous year winter moth defoliation was also included in the model; this 

interaction was treated as a fixed effect. Defoliation data were available beginning in 2004. Thus, 

previous year defoliation levels were only available from 2005 and onwards. The application of AICc 

for model selection requires that identical datasets be used in all models compared. As such, the year 

2004 was excluded from the model analyses. Similarly, for trees added after 2004 (as winter moth 

moved into new areas), the first year of defoliation estimates was excluded. 

For analysis, estimates of defoliation were pooled by species. Given that we accounted for year and 

tree (as random effects), the number of observations for our multiple regression analyses were not 

restricted to the number of ―defoliation trees‖. Rather, the number of observations per species was 

determined by the number of defoliation trees multiplied by the number of years in which defoliation 

estimates were made (again, minus the first year of defoliation to account for previous year defoliation 

estimates). For example, Quercus 1 (Table 1) had defoliation estimates from 2004–2010; when 

removing the year 2004, this equates to six years of defoliation estimates with corresponding RWI 

values. Thus, the number of observations included 37 RWI values for Quercus, 29 RWI values for 

Acer, and 60 RWI values for Pinus. 

Multiple regression was also used to determine the role of percent current year winter moth 

defoliation, percent previous year winter moth defoliation, the interaction of current year and previous 

year winter moth defoliation, tree, and year in explaining Quercus earlywood (EW) and latewood 

(LW) RWI. As before, the model with the lowest AICc value was adopted as the best model. In 
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addition, the proportions of earlywood and latewood were separately regressed on total Quercus RWI 

to determine their relationships with total annual ring width index.  

We tested for serial correlation in the response variable in each of our ―best‖ models using the 

Durbin-Watson test. If random effects were retained in the model, which precluded the use of the 

Durbin-Watson test, we used two methods to test for serial correlation. First, we assessed serial 

correlation between the model residuals and the one-year lagged residuals using an ordinary Pearson 

correlation coefficient. Second, we dropped the random effect from the model and tested for serial 

correlation once again using a Durbin-Watson test. 

3. Results 

The Quercus (n = 8) used in defoliation analyses had a mean diameter of 32.4 (SE ± 2.3) cm and a 

mean age of 33 (SE ± 5.3) years. Acer (n = 6) had a mean diameter of 32.1 (SE ± 4.8) cm and an 

average age of 45 (SE ± 5.7) years. Pinus (n = 12) had a mean diameter of 34.0 (SE ± 3.3) cm and a 

mean age of 50 (SE ± 4.9) years (Table 1). Observed levels of defoliation ranged from 4% to 95% for 

Quercus and from 0% to 52% for Acer.  

A total of 16 models were evaluated for each response variable (Quercus RWI, Quercus EW RWI, 

Quercus LW RWI, Acer RWI, and Pinus RWI). These models included the global model (percent 

current year winter moth defoliation, percent previous year winter moth defoliation, the interaction of 

current year and previous year winter moth defoliation, tree, and year) and each nested iteration.  

For Quercus RWI, one model was retained (Table 2). Based on this model (ΔAICc = 0.0;  

r
2

adj = 0.24), variation in Quercus RWI was most strongly explained by percent current year winter 

moth defoliation (parameter estimate = −0.006; SE ± 0.0017), wherein winter moth defoliation was 

associated with up to a 47% reduction in Quercus RWI (Figure 1). There was no serial correlation in 

the residuals from this model (Durbin-Watson = 1.899; auto correlation = 0.0019; p = 0.3753). 

Figure 1. Quercus RWI by percent current year winter moth defoliation. Defoliation 

estimates (n = 37) among eight trees throughout eastern Massachusetts from 2005–2010. 

Quercus RWI = 1.202 – 0.006 × (% current year winter moth defoliation). r
2

adj = 0.24. 
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Table 2. Results of multiple regression with Quercus, Acer, and Pinus response variables 

from the years 2005–2010 with defoliation estimates on individual trees throughout eastern 

Massachusetts. Parameter estimates (PE) are shown for fixed effects, variance components 

(VC) are provided for random effects. RWI = ring width index; EW = earlywood;  

LW = latewood; SE = standard error; ΔAICc = corrected Akaike Information Criterion 

simple differences. 

      
Log Akaike Evidence 

Model  Model Effects ΔAICc r^2 adj PE/VC SE Likelihood Weight Ratio 

Quercus RWI 
        

 
% current year 0.00 0.24 −0.006 0.002 1.00 0.72 1.00 

Quercus EW RWI 
        

 
% previous year 0.00 0.77 −0.001 0.000 1.00 0.68 1.00 

 
tree (random) 

  
0.010 0.006 

   
Quercus LW RWI 

        

 
% current year 0.00 0.35 −0.006 0.001 1.00 0.70 1.00 

Acer RWI 
        

 
% previous year 1.41 −0.02 −0.002 0.003 0.49 0.13 2.02 

 
% previous year 1.02 0.72 0.000 0.002 0.60 0.16 1.67 

 
tree (random) 

  
0.042 0.030 

   

 
% current year 0.09 0.02 −0.004 0.003 0.96 0.25 1.05 

 
% current year 0.00 0.73 −0.002 0.002 1.00 0.26 1.00 

 
tree (random) 

  
0.041 0.029 

   
Pinus RWI 

        

 
% current year 0.00 0.02 0.002 0.001 1.00 0.43 1.00 

Analysis of the Quercus earlywood and latewood growth indices revealed the complexity behind 

the total Quercus RWI reduction. Based on the best model (ΔAICc = 0.0; r
2

adj = 0.77; Table 2), 

Quercus earlywood RWI was negatively related to percent previous year winter moth defoliation 

(parameter estimate = −0.001; SE ± 0.0005) and the random effect of tree (variance component = 0.01; 

SE ± 0.006). This relationship resulted in up to a 24% reduction in Quercus earlywood RWI. There 

was strong serial correlation in the residuals of this model (Pearson Correlation = 0.7895; p < 0.001). 

Consequently, the confidence limits on the model might not be as conservative as they would be in the 

absence of serial correlation and the AICc evaluation may include marginal variables in the model. 

When the random effect of tree was removed from the model, there was no correlation between the 

residuals of Quercus earlywood RWI vs. % previous year defoliation (Durbin-Watson = 2.122; auto 

correlation = −0.07023; p = 0.6393).  

Quercus latewood RWI was negatively related to percent current year winter moth defoliation 

(parameter estimate = −0.006; SE ± 0.001), based on the one retained model (ΔAICc = 0.00;  

r
2

adj = 0.35; Table 2). This relationship resulted in up to a 67% reduction in Quercus latewood RWI 

(Figure 2). There was no serial correlation in the residuals from this model (Durbin-Watson = 2.025; 

auto correlation = −0.0608; p = 0.5279).  

Simple regression analysis found that the proportion of earlywood in a given year decreased (and, 

thus, the proportion of latewood increased) with total Quercus RWI (r
2

adj = 0.29; Figure 3). This 

relationship indicates that increased Quercus RWI drives a reduction in the proportion of earlywood 
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and an increase in latewood proprotion and lends further support for the Quercus RWI model wherein 

percent current year winter moth defoliation was the strongest predictor of Quercus RWI, as percent 

current year winter moth defoliation was shown (above) to reduce Quercus LW RWI.  

Figure 2. Quercus latewood RWI by percent current year winter moth defoliation. 

Defoliation estimates (n = 37) among eight trees throughout eastern Massachusetts from 

2005–2010. Quercus LW RWI = 0.851 – 0.006 × (% current year winter moth 

defoliation). r
2

adj = 0.35. 

 

Figure 3. Proportion of Quercus earlywood by Quercus RWI on annual ring widths  

(n = 37) among eight trees throughout eastern Massachusetts from 2005–2010. Proportion 

earlywood (arcsine sq. rt.) = 0.929 – 0.267 × (Quercus RWI). r
2

adj = 0.29. 

 

For Acer RWI, the best model (ΔAICc = 0.00; r
2

adj = 0.73; Table 2) contained percent current year 

winter moth defoliation (parameter estimate = −0.002; SE ± 0.002) and tree (variance component = 0.04; 

SE ± 0.03). In addition to the best model, there were three competing models (ΔAICc = 0.09 to 1.41) 

that attempted to explain Acer RWI. Based on the r
2

adj values of these competing models (Table 2), the 

majority of the variation in Acer RWI was explained by tree rather than winter moth defoliation. There 
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was strong serial correlation in the residuals of the best Acer RWI model (Pearson Correlation = 0.7001; 

p = 0.0002). Consequently, the confidence limits on this model might not be as conservative as they 

would be in the absence of serial correlation and the AICc evaluation may include marginal variables 

in the model. When the random effect of tree was removed from the model, there was no correlation 

between the residuals of Acer RWI vs. % current year winter moth defoliation (Durbin-Watson = 2.036; 

auto correlation = −0.0606; p = 0.5038). 

There was no relationship (r
2

adj = 0.02; Table 2) between non-host (control) Pinus RWI and winter 

moth defoliation when matched with the best model for Quercus RWI [percent current year winter 

moth defoliation (parameter estimate 0.002; SE ± 0.001) as the sole explanatory variable].  

4. Discussion 

Winter moth is well-established in southern New England [2] and has been responsible for 

extensive tree defoliation throughout eastern Massachusetts. The forests of northeastern USA have a 

long history of invasion by exotic species [34]. European gypsy moth, hemlock woolly adelgid, 

Adelges tsugae Annand (Homoptera: Adelgidae), Asian longhorned beetle, Anoplophora glabripennis 

Motschulsky (Coleoptera: Cerambycidae), Dutch elm disease, Ophiostoma novo-ulmi Brasier and 

Ophiostoma ulmi (Buisman) Melin and Nannf.), chestnut blight, Cryphonectria parasitica (Murrill) 

M.E. Barr), and beech bark disease complex have all dramatically altered, or threaten to alter, native 

forest ecosystems of this region [18,35–38]. Our results suggest that invasion by winter moth may act 

as an additional stressor in these forests. Although our study focused on individual trees growing in the 

open or in forest edges, our results may provide an estimate on the impact of winter moth defoliation 

on forest trees. However, if applied to a forested situation, the results presented here are likely 

conservative, as the influence of competition with neighboring trees was reduced in this study.  

Winter moth defoliation reduced the annual radial growth of infested Quercus trees in eastern 

Massachusetts by up to 47% in the year of defoliation. That this reduction is due to winter moth 

defoliation and not some stochastic change in the physical environment is suggested by the fact that 

winter moth defoliation failed to explain much variation in Pinus radial growth. Moreover, the positive 

parameter estimate for percent current year winter moth defoliation (parameter estimate = 0.002, 

Table 2) in the best model for Pinus RWI suggests that winter moth defoliation on neighboring host 

trees may have a slight release effect on Pinus radial growth. Thus, the radial growth reduction shown 

by Quercus cannot likely be explained by environmental factors that happen to correlate with winter 

moth defoliation levels.  

The large amount of variation in Acer RWI that was explained by tree may have been caused by 

great variation in Acer ring widths among trees (including the defoliation and cross-dating trees). The 

series inter-correlation for the Acer tree cores (0.055) was well below the critical correlation level 

(0.328) used in COFECHA. Numerous efforts were made to ensure the measurement accuracy of these 

cores. Consequently, the low series inter-correlation was likely a result of natural variation in Acer 

growth across our sites. The low series inter-correlation value limits any discussion of the effects of 

winter moth defoliation on Acer radial growth. However, Heichel and Turner [39] found that 

defoliated A. rubrum has a higher rate of CO2 assimilation in residual primary and regrowth foliage 

than Q. rubra. Moreover, A. rubrum branch growth and leaf production may be less severely affected 
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by defoliation than Q. rubra [40]. Although not evaluated in our study, this comparative resilience of 

A. rubrum to defoliation may partially explain the lack of response of Acer RWI to winter moth 

defoliation that we observed.  

Although we accounted for random variation due to individual tree, site characteristics  

(e.g., edaphic), and climate in our regression models it is possible that moisture or temperature extremes 

during our study period influenced the observed variation in RWI. In addition, it is also possible that 

other defoliators that were not observed influenced radial growth of our study trees. These and other 

potentially influential factors may account for residual variation in our regression models. 

The presence of strong serial correlation in the ―best‖ Quercus earlwood RWI (explanatory 

variables included % previous year winter moth defoliation and tree) model suggest that, for some 

Quercus trees, earlywood growth from one year to the next is highly correlated, which could indicate 

some environmental signal that influences more than one year of radial growth. As we included 

percent previous year and percent current year winter moth defoliation in the original models, this 

defoliation was factored out. Thus, the residual variation in earlywood RWI may be explained by some 

strong multi-year signal. 

The effect of winter moth defoliation on Quercus radial growth was likely caused by a reduction in 

photosynthate production and/or allocation to radial growth, as increased levels of defoliation likely 

reduce the net CO2 assimilation within defoliated A. rubrum and Q. rubra [39] and repeated defoliation 

can reduce root carbon reserves in mature trees [41]. The earlywood and latewood growth reductions 

observed in our study are consistent with the phenology of winter moth and Quercus. As ring-porous 

species, the earlywood growth of Quercus is proportionally driven by resources produced and stored 

during previous growing seasons [42] and is initiated prior to spring bud burst (leaf expansion) [43,44]. 

Conversely, latewood growth of ring-porous species is mainly a function of photosynthate allocation in 

the year concurrent with growth [5,42]. Winter moth larval feeding occurs in the expanding buds in the 

early spring and is, therefore, concurrent with earlywood production. As such, winter moth defoliation 

in a given year does not have an effect on the earlywood growth for that year. However, as winter 

moth defoliates Quercus while the leaves are expanding, and since latewood growth is proportionally 

dependent upon actively produced photosynthate from within the current year, the photosynthetic 

capabilities of the defoliated tree may be reduced and/or photosynthate may be allocated to processes 

(e.g., defense, re-leafing) other than latewood growth. This relationship between defoliation in the 

current year and latewood growth has been demonstrated with other defoliators [26,45–48].  

Although not quantified in this study, we have observed tree refoliation (i.e., flushing of a second 

set of leaves) during heavy winter moth defoliation. This phenomenon may have influenced our 

results, accounting for variation in Quercus RWI and contributing to our lack of relationship between 

Acer and winter moth defoliation. Defoliation can induce compensatory production of photosynthate in 

the remaining or regrowth leaf tissue of trees [39,49,50]. However, increased levels of defoliation 

likely reduce the net CO2 assimilation within defoliated A. rubrum and Q. rubra [39]. Moreover, as 

repeated defoliation can reduce root carbon reserves in mature trees [41], the benefit of compensatory 

photosynthesis and/or refoliation is likely diminished after multiple years of defoliation.  

Our dendroecological analyses evaluated multiple aspects of tree radial growth and timing of 

defoliation over multiple years to expand the understanding of how winter moth impacts individual 

tree growth. Our results are consistent with, synthesize, and expand on previous studies that have 
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evaluated the effects of winter moth defoliation in Nova Scotia and Europe. Embree [17] showed a 

reduction in radial growth and basal area of Q. rubra trees with increasing levels of winter moth 

defoliation in Nova Scotia. As part of their classic studies at Wytham Wood, England, Varley and 

Gradwell [5] found a negative relationship between the percent latewood growth of Q. robur and 

caterpillar densities of winter moth and the green oak leaf roller. The authors also suggested that high 

caterpillar densities may negatively influence earlywood growth in the same year as well [5]. While 

these previous studies focused on various aspects of defoliation and tree growth, we were able to 

investigate linkages between defoliation intensity, annual increment, and the two portions that 

comprise an annual ring (i.e., earlywood and latewood). We observed a radial growth reduction of up 

to 67% in Quercus latewood RWI concurrent with increasing winter moth defoliation. Moreover, we 

found that Quercus earlywood RWI was also negatively influenced by winter moth defoliation (from 

the previous year) by up to 24%. This suggests that one year of winter moth defoliation may influence 

two years of radial growth. Our results further suggest that winter moth defoliation in New England 

may lead to tree decline and mortality, as repeated defoliation by winter moth caused crown dieback 

and tree mortality in Q. rubra stands in Nova Scotia [13,17]. Intensive stand sampling from sites 

throughout eastern Massachusetts showed that increased tree mortality is occurring in stands where 

winter moth has been present for multiple years [51].  

The effect of winter moth defoliation on the radial growth of Quercus was similar to those 

documented for other outbreak species and further implies this insect species will have a negative 

effect on the growth and survivorship of Quercus trees in mixed forests of Massachusetts. Studies have 

found a negative relationship between defoliation by gypsy moth and the standardized total radial 

increment of Q. rubra trees [26,52]. Moreover, consistent with our results, Muzika and Liebhold [26] 

and Fajvan et al. [48] also noted a reduction in latewood growth of Q. rubra concomitant with gypsy 

moth defoliation. Further, earlywood production in Quercus species was reduced in the season 

following gypsy moth defoliation [48]. The implications of our findings are considerable, as gypsy 

moth is often referred to as one of the most devastating threats facing eastern U.S. forests [26,48] and 

these two species have potentially overlapping spatial and temporal distributions. The combined 

effects of these insects on tree growth and mortality are currently unknown, but could have serious 

consequences for tree health in northeastern forests as multiple defoliation events on deciduous trees in 

a given year may result in tree mortality [53]. 

In addition to radial growth reduction, insect defoliation can lead to widespread tree decline and 

mortality. In the northeastern United States, relationships between tree mortality and defoliation have 

been well-documented (e.g., [35,48,54–56]). Insect defoliation may initiate a chronosequence of 

decline and mortality that involves secondary wood borers and root decay fungi, notably Armillaria 

species [57,58]. Defoliating insects can alter forest stand dynamics [59] and exotic organisms may 

pose a serious threat to native forest ecosystems and forest management regimes [60,61]. The results 

presented here have relevance to novel introductions of winter moth into deciduous forests in eastern 

North America, where the species composition and climate offer ideal winter moth habitat [2,62].  

Although the present study does not address the forest stand level impacts of winter moth 

defoliation, our results indicate that winter moth may influence tree mortality in Quercus-dominated 

forests in eastern Massachusetts. Radial growth decline can be used as a predictor of tree mortality [21,22] 

and multiple year winter moth defoliation events may contribute to mortality of Q. rubra [13,51]. 
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Moreover, frequent defoliation (with periodicity ranging from 5 to 15 years) may reduce net ecosystem 

productivity [63]. Given the polyphagous feeding of winter moth it is difficult to infer species 

compositional changes in forests defoliated by winter moth. However, given the species composition 

of forests in our study region, the observed preferential feeding of winter moth on Quercus, and the 

possible lack of response of Acer to winter moth defoliation, suggest a shift from Quercus-dominated 

forests to increased importance of Acer and Pinus. 

5. Conclusions 

The results presented here indicate that winter moth is a significant threat to the forests of southern 

New England and Quercus forests throughout North America. As winter moth populations are  

well-established throughout eastern Massachusetts, and assuming the results presented herein can be 

extrapolated to other sites, the Quercus resource that dominates much of eastern Massachusetts will 

likely decline in the presence of winter moth defoliation. Given the growth decline associated  

with winter moth defoliation, current efforts to establish biological control agents [2] for this species 

are warranted. 
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