259 research outputs found
Metal-insulator transition at B=0 in an ultra-low density () two dimensional GaAs/AlGaAs hole gas
We have observed a metal-insulator transition in an ultra-low density two
dimensional hole gas formed in a high quality GaAs-AlGaAs heterostructure at
B=0. At the highest carrier density studied () the hole gas is strongly metallic, with an exceptional mobility of
. The low disorder and strength of the many-body
interactions in this sample are highlighted by the observation of re-entrant
metal insulator transitions in both the fractional () and integer
() quantum Hall regimes. On reducing the carrier density the
temperature and electric field dependence of the resistivity show that the
sample is still metallic at (), becoming
insulating at . Our results indicate that
electron-electron interactions are dominant at these low densities, pointing to
the many body origins of this metal-insulator transition. We note that the
value of at the transition () is large enough to allow
the formation of a weakly pinned Wigner crystal, and is approaching the value
calculated for the condensation of a pure Wigner crystal.Comment: 4 pages, latex, 4 postscript figures, submitted to EP2DS-12 on 21st
August 1997, to appear in Physica
Induced currents, frozen charges and the quantum Hall effect breakdown
Puzzling results obtained from torque magnetometry in the quantum Hall effect
(QHE) regime are presented, and a theory is proposed for their explanation.
Magnetic moment saturation, which is usually attributed to the QHE breakdown,
is shown to be related to the charge redistribution across the sample.Comment: 5 pages, 2 figures, Proceedings of the 11th International Symposium
"Nanostructures: Physics and Technology", St.Petersburg, Russia, June 23-28,
2003, expanded version with one figure adde
Metal-insulator transition in disordered 2DEG including temperature effects
We calculate self-consistently the mutual dependence of electron correlations
and electron-defect scattering for a two dimensional electron gas at finite
temperature. We employ an STLS approach to calculate the electron correlations
while the electron scattering rate off Coulombic impurities and surface
roughness is calculated using self-consistent current-relaxation theory. The
methods are combined and self-consistently solved. We discuss a metal-insulator
transition for a range of disorder levels and electron densities. Our results
are in good agreement with recent experimental observations.Comment: 4 pages, RevTeX + epsf, 5 figure
The Aharonov-Bohm Effect in the Fractional Quantum Hall Regime
We have investigated experimentally resonant tunnelling through
single-particle states formed around an antidot by a magnetic field, in the
fractional quantum Hall regime. For 1/3 filling factor around the antidot,
Aharonov-Bohm oscillations are observed with the same magnetic field period as
in the integer quantum Hall regime. All our measurements are consistent with
quasiparticles of fractional charge e*. However, the results are also
consistent with particles of any charge (>= e*) as the system must rearrange
every time the flux enclosed increases by h/e.Comment: Postscript, 4 pages, gzipped (350 kB
Experimental evidence of a metal-insulator transition in a half-filled Landau level
We have measured the low-temperature transport properties of a high-mobility
front-gated GaAs/Al_{0.33}Ga_{0.67}As heterostructure. By changing the applied
gate voltage, we can vary the amount of disorder within the system. At a Landau
level filling factor , where the system can be described by the
composite fermion picture, we observe a crossover from metallic to insulating
behaviour as the disorder is increased. Experimental results and theoretical
prediction are compared.Comment: To be published in Solid State Communications. 4 figure
Two-Component Scaling near the Metal-Insulator Bifurcation in Two-Dimensions
We consider a two-component scaling picture for the resistivity of
two-dimensional (2D) weakly disordered interacting electron systems at low
temperature with the aim of describing both the vicinity of the bifurcation and
the low resistance metallic regime in the same framework. We contrast the
essential features of one-component and two-component scaling theories. We
discuss why the conventional lowest order renormalization group equations do
not show a bifurcation in 2D, and a semi-empirical extension is proposed which
does lead to bifurcation. Parameters, including the product , are
determined by least squares fitting to experimental data. An excellent
description is obtained for the temperature and density dependence of the
resistance of silicon close to the separatrix. Implications of this
two-component scaling picture for a quantum critical point are discussed.Comment: 7 pages, 1 figur
Geometric Suppression of Single-Particle Energy Spacings in Quantum Antidots
Quantum Antidot (AD) structures have remarkable properties in the integer
quantum Hall regime, exhibiting Coulomb-blockade charging and the Kondo effect
despite their open geometry. In some regimes a simple single-particle (SP)
model suffices to describe experimental observations while in others
interaction effects are clearly important, although exactly how and why
interactions emerge is unclear. We present a combination of experimental data
and the results of new calculations concerning SP orbital states which show how
the observed suppression of the energy spacing between states can be explained
through a full consideration of the AD potential, without requiring any effects
due to electron interactions such as the formation of compressible regions
composed of multiple states, which may occur at higher magnetic fields. A full
understanding of the regimes in which these effects occur is important for the
design of devices to coherently manipulate electrons in edge states using AD
resonances.Comment: 4 pages, 2 figure
Detection of Coulomb Charging around an Antidot
We have detected oscillations of the charge around a potential hill (antidot)
in a two-dimensional electron gas as a function of a perpendicular magnetic
field B. The field confines electrons around the antidot in closed orbits, the
areas of which are quantised through the Aharonov-Bohm effect. Increasing B
reduces each state's area, pushing electrons closer to the centre, until enough
charge builds up for an electron to tunnel out. This is a new form of the
Coulomb blockade seen in electrostatically confined dots. We have also studied
h/2e oscillations and found evidence for coupling of opposite spin states of
the lowest Landau level.Comment: 3 pages, 3 Postscript figures, submitted to the proceedings of
EP2DS-1
Deconstruction of the Trap Model for the New Conducting State in 2D
A key prediction of the trap model for the new conducting state in 2D is that
the resistivity turns upwards below some characteristic temperature, . Altshuler, Maslov, and Pudalov have argued that the reason why no upturn
has been observed for the low density conducting samples is that the
temperature was not low enough in the experiments. We show here that within the Altshuler, Maslov, and Pudalov trap model actually increases
with decreasing density, contrary to their claim. Consequently, the trap model
is not consistent with the experimental trends.Comment: Published version of Deconstructio
Low-field magnetoresistance in GaAs 2D holes
We report low-field magnetotransport data in two-dimensional hole systems in
GaAs/AlGaAs heterostructures and quantum wells, in a large density range, cm, with primary focus on
samples grown on (311)A GaAs substrates. At high densities, cm, we observe a remarkably strong positive magnetoresistance.
It appears in samples with an anisotropic in-plane mobility and predominantly
along the low-mobility direction, and is strongly dependent on the
perpendicular electric field and the resulting spin-orbit interaction induced
spin-subband population difference. A careful examination of the data reveals
that the magnetoresistance must result from a combination of factors including
the presence of two spin-subbands, a corrugated quantum well interface which
leads to the mobility anisotropy, and possibly weak anti-localization. None of
these factors can alone account for the observed positive magnetoresistance. We
also present the evolution of the data with density: the magnitude of the
positive magnetoresistance decreases with decreasing density until, at the
lowest density studied ( cm), it vanishes and is
replaced by a weak negative magnetoresistance.Comment: 8 pages, 8 figure
- …