32 research outputs found

    Functional specialization in nucleotide sugar transporters occurred through differentiation of the gene cluster EamA (DUF6) before the radiation of Viridiplantae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The drug/metabolite transporter superfamily comprises a diversity of protein domain families with multiple functions including transport of nucleotide sugars. Drug/metabolite transporter domains are contained in both solute carrier families 30, 35 and 39 proteins as well as in acyl-malonyl condensing enzyme proteins. In this paper, we present an evolutionary analysis of nucleotide sugar transporters in relation to the entire superfamily of drug/metabolite transporters that considers crucial intra-protein duplication events that have shaped the transporters. We use a method that combines the strengths of hidden Markov models and maximum likelihood to find relationships between drug/metabolite transporter families, and branches within families.</p> <p>Results</p> <p>We present evidence that the triose-phosphate transporters, domain unknown function 914, uracil-diphosphate glucose-N-acetylglucosamine, and nucleotide sugar transporter families have evolved from a domain duplication event before the radiation of <it>Viridiplantae </it>in the EamA family (previously called domain unknown function 6). We identify previously unknown branches in the solute carrier 30, 35 and 39 protein families that emerged simultaneously as key physiological developments after the radiation of <it>Viridiplantae</it>, including the "35C/E" branch of EamA, which formed in the lineage of <it>T. adhaerens </it>(<it>Animalia</it>). We identify a second cluster of DMTs, called the domain unknown function 1632 cluster, which has non-cytosolic N- and C-termini, and thus appears to have been formed from a different domain duplication event. We identify a previously uncharacterized motif, G-X(6)-G, which is overrepresented in the fifth transmembrane helix of C-terminal domains. We present evidence that the family called fatty acid elongases are homologous to transporters, not enzymes as had previously been thought.</p> <p>Conclusions</p> <p>The nucleotide sugar transporters families were formed through differentiation of the gene cluster EamA (domain unknown function 6) before <it>Viridiplantae</it>, showing for the first time the significance of EamA.</p

    Genome-scale relationships between cytosine methylation and dinucleotide abundances in animals

    Get PDF
    AbstractIn mammalian genomes CpGs occur at one-fifth their expected frequency. This is accepted as resulting from cytosine methylation and deamination of 5-methylcytosine leading to TpG and CpA dinucleotides. The corollary that a CpG deficit should correlate with TpG excess has not hitherto been systematically tested at a genomic level. I analyzed genome sequences (human, chimpanzee, mouse, pufferfish, zebrafish, sea squirt, fruitfly, mosquito, and nematode) to do this and generally to assess the hypothesis that CpG deficit, TpG excess, and other data are accountable in terms of 5-methylcytosine mutation. In all methylated genomes local CpG deficit decreases with higher G + C content. Local TpG surplus, while positively associated with G + C level in mammalian genomes but negatively associated with G + C in nonmammalian methylated genomes, is always explicable in terms of the CpG trend under the methylation model. Covariance of dinucleotide abundances with G + C demonstrates that correlation analyses should control for G + C. Doing this reveals a strong negative correlation between local CpG and TpG abundances in methylated genomes, in accord with the methylation hypothesis. CpG deficit also correlates with CpT excess in mammals, which may reflect enhanced cytosine mutation in the context 5′-YCG-3′. Analyses with repeat-masked sequences show that the results are not attributable to repetitive elements

    Five endometrial cancer risk loci identified through genome-wide association analysis.

    Get PDF
    We conducted a meta-analysis of three endometrial cancer genome-wide association studies (GWAS) and two follow-up phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five new risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1, near SIVA1). We also found a second independent 8q24.21 signal (rs17232730). Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r(2) = 0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103[T] allele that is protective in endometrial cancer suppressed gene expression in vitro, suggesting that regulation of the expression of KLF5, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer.I.T. is supported by Cancer Research UK and the Oxford Comprehensive Biomedical Research Centre. T.H.T.C. is supported by the Rhodes Trust and the Nuffield Department of Medicine. Funding for iCOGS infrastructure came from the European Community's Seventh Framework Programme under grant agreement 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692 and C8197/A16565), the US National Institutes of Health (R01 CA128978, U19 CA148537, U19 CA148065 and U19 CA148112), the US Department of Defense (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, the Susan G. Komen Foundation for the Cure, the Breast Cancer Research Foundation and the Ovarian Cancer Research Fund. SEARCH recruitment was funded by a programme grant from Cancer Research UK (C490/A10124). Stage 1 and stage 2 case genotyping was supported by the NHMRC (552402 and 1031333). Control data were generated by the WTCCC, and a full list of the investigators who contributed to the generation of the data is available from the WTCCC website. We acknowledge use of DNA from the British 1958 Birth Cohort collection, funded by UK Medical Research Council grant G0000934 and Wellcome Trust grant 068545/Z/02; funding for this project was provided by the Wellcome Trust under award 085475. NSECG was supported by the European Union's Framework Programme 7 CHIBCHA grant and Wellcome Trust Centre for Human Genetics Core Grant 090532/Z/09Z, and CORGI was funded by Cancer Research UK. BCAC is funded by Cancer Research UK (C1287/A10118 and C1287/A12014). OCAC is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07) and the UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.356

    Multidimensional Scaling of Binary Dissimilarities: Direct and Derived Approaches

    No full text
    Given a matrix of dissimilarities, it has been debated whether researchers should perform multidimensional scaling on this original matrix or on a new one derived by comparing rows in the original matrix. Careful comparison studies (Drasgow &amp; Jones, 1979; Van der Kloot &amp; Van Herk, 1991) in the context of sorting data indicated that most of the initial enthusiasm for the derivative approach was unfounded. The current work, a Monte Carlo study of structured binary data derived from known two-dimensional configurations using ALSCAL, complements and extends the previous studies. We discuss a weakness in the squared difference (\Delta) rowcomparison rule used previously and propose an alternative row-comparison measure based on the Jaccard coefficient. Scaling the binary data directly gave better performance, as gauged by Procrustes statistics, than did scaling \Delta data across a range of noise levels. The quality of solutions obtained by scaling Jaccard data was always better or essentia..

    An ontology of human developmental anatomy

    No full text
    Human developmental anatomy has been organized as structured lists of the major constituent tissues present during each of Carnegie stages 1–20 (E1–E50, ∼8500 anatomically defined tissue items). For each of these stages, the tissues have been organized as a hierarchy in which an individual tissue is catalogued as part of a larger tissue. Such a formal representation of knowledge is known as an ontology and this anatomical ontology can be used in databases to store, organize and search for data associated with the tissues present at each developmental stage. The anatomical data for compiling these hierarchies comes from the literature, from observations on embryos in the Patten Collection (Ann Arbor, MI, USA) and from comparisons with mouse tissues at similar stages of development. The ontology is available in three versions. The first gives hierarchies of the named tissues present at each Carnegie stage (http://www.ana.ed.ac.uk/anatomy/database/humat/) and is intended to help analyse both normal and abnormal human embryos; it carries hyperlinked notes on some ambiguities in the literature that have been clarified through analysing sectioned material. The second contains many additional subsidiary tissue domains and is intended for handling tissue-associated data (e.g. gene-expression) in a database. This version is available at the humat site and at http://genex.hgu.mrc.ac.uk/Resources/intro.html/), and has been designed to be interoperable with the ontology for mouse developmental anatomy, also available at the genex site. The third gives the second version in GO ontology syntax (with standard IDs for each tissue) and can be downloaded from both the genex and the Open Biological Ontology sites (http://obo.sourceforge.net/

    Premiere use of Integra™ artificial skin to close an extensive fetal skin defect during open in utero repair of myelomeningocele

    Full text link
    BACKGROUND: There are fetuses demonstrating very large myelomeningocele lesion which can not be covered with autochothonous skin. MATERIAL AND METHODS: We use Integra™ artifical skin for intrauterine coverage of the back lesion. A reverse latissimus dorsi flap was used postnataly to reinforce the repair site. CONCLUSION: Integra™ appears to be a suitable coverage for large soft tissue defects in utero. Moreover, a postnatal reverse latissimus dorsi flap appears to markedly strengthen tissue coverage over a spinal cord rescued in utero
    corecore