528 research outputs found

    Large amplitude behavior of the bulk viscosity of dense matter

    Full text link
    We study the bulk viscosity of dense matter, taking into account non-linear effects which arise in the large amplitude "supra-thermal" region where the deviation μΔ\mu_\Delta of the chemical potentials from chemical equilibrium fulfills μΔ>T\mu_\Delta>T. This regime is relevant to unstable modes such as r-modes, which grow in amplitude until saturated by non-linear effects. We study the damping due to direct and modified Urca processes in hadronic matter, and due to nonleptonic weak interactions in strange quark matter. We give general results valid for an arbitrary equation of state of dense matter and find that the viscosity can be strongly enhanced by supra-thermal effects. Our study confirms previous results on quark matter and shows that the non-linear enhancement is even stronger in the case of hadronic matter. Our results can be applied to calculations of the r-mode-induced spin-down of fast-rotating neutron stars, where the spin-down time will depend on the saturation amplitude of the r-modeComment: 15 pages, 11 figure

    Impact of r-modes on the cooling of neutron stars

    Full text link
    Studying the frequency and temperature evolution of a compact star can give us valuable information about the microscopic properties of the matter inside the star. In this paper we study the effect of dissipative reheating of a neutron star due to r-mode oscillations on its temperature evolution. We find that there is still an impact of an r-mode phase on the temperature long after the star has left the instability region and the r-mode is damped completely. With accurate temperature measurements it may be possible to detect this trace of a previous r-mode phase in observed pulsars.Comment: 7 pages, 5 figures, Proceedings of QCD@work 2012 International Workshop on QCD Theory and Experimen

    Suprathermal viscosity of dense matter

    Full text link
    Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation mu_Delta of the chemical potentials from chemical equilibrium fulfills mu_Delta > T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.Comment: 8 page

    Quantum Channel AlGaN/GaN/AlGaN High Electron Mobility Transistor

    Full text link
    Scaling down the GaN channel in a double heterostructure AlGaN/GaN/AlGaN High Electron Mobility Transistor (HEMT) to the thicknesses on the order of or even smaller than the Bohr radius confines electrons in the quantum well even at low sheet carrier densities. In contrast to the conventional designs, this Quantum Channel (QC) confinement is controlled by epilayer design and the polarization field and not by the electron sheet density. As a result, the breakdown field at low sheet carrier densities increases by approximately 36% or even more because the quantization leads to an effective increase in the energy gap. In addition, better confinement increases the electron mobility at low sheet carrier densities by approximately 50%. Another advantage is the possibility of increasing the aluminum molar fraction in the barrier layer because a very thin layer prevents material relaxation and the development of dislocation arrays. This makes the QC especially suitable for high-voltage, high-frequency, high-temperature, and radiation-hard applications.Comment: 7 pages 6 figure

    Viscous damping of r-modes: Large amplitude saturation

    Full text link
    We analyze the viscous damping of r-mode oscillations of compact stars, taking into account non-linear viscous effects in the large-amplitude regime. The qualitatively different cases of hadronic stars, strange quark stars, and hybrid stars are studied. We calculate the viscous damping times of r-modes, obtaining numerical results and also general approximate analytic expressions that explicitly exhibit the dependence on the parameters that are relevant for a future spindown evolution calculation. The strongly enhanced damping of large amplitude oscillations leads to damping times that are considerably lower than those obtained when the amplitude dependence of the viscosity is neglected. Consequently, large-amplitude viscous damping competes with the gravitational instability at all physical frequencies and could stop the r-mode growth in case this is not done before by non-linear hydrodynamic mechanisms.Comment: 18 pages, 17 figures, changed convention for the r-mode amplitude, version to be published in PR

    Viscous damping of r-modes: Small amplitude instability

    Full text link
    We study the viscous damping of r-modes of compact stars and analyze in detail the regions where small amplitude modes are unstable to the emission of gravitational radiation. We present general expressions for the viscous damping times for arbitrary forms of interacting dense matter and derive general semi-analytic results for the boundary of the instability region. These results show that many aspects, like in particular the physically important minima of the instability boundary, are surprisingly insensitive to detailed microscopic properties of the considered form of matter. Our general expressions are applied to the cases of hadronic stars, strange stars, and hybrid stars, and we focus on equations of state that are compatible with the recent measurement of a heavy compact star. We find that hybrid stars with a sufficiently small core can "masquerade" as neutron stars and feature an instability region that is indistinguishable from that of a neutron star, whereas neutron stars with a core density high enough to allow direct Urca reactions feature a notch on the right side of the instability region.Comment: 22 pages, 16 figures, published versio

    Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide

    Get PDF
    Quantum systems can provide outstanding performance in various sensing applications, ranging from bioscience to nanotechnology. Atomic-scale defects in silicon carbide are very attractive in this respect because of the technological advantages of this material and favorable optical and radio frequency spectral ranges to control these defects. We identified several, separately addressable spin-3/2 centers in the same silicon carbide crystal, which are immune to nonaxial strain fluctuations. Some of them are characterized by nearly temperature independent axial crystal fields, making these centers very attractive for vector magnetometry. Contrarily, the zero-field splitting of another center exhibits a giant thermal shift of -1.1 MHz/K at room temperature, which can be used for thermometry applications. We also discuss a synchronized composite clock exploiting spin centers with different thermal response.Comment: 8 pages, 7 figure
    corecore