research

Viscous damping of r-modes: Large amplitude saturation

Abstract

We analyze the viscous damping of r-mode oscillations of compact stars, taking into account non-linear viscous effects in the large-amplitude regime. The qualitatively different cases of hadronic stars, strange quark stars, and hybrid stars are studied. We calculate the viscous damping times of r-modes, obtaining numerical results and also general approximate analytic expressions that explicitly exhibit the dependence on the parameters that are relevant for a future spindown evolution calculation. The strongly enhanced damping of large amplitude oscillations leads to damping times that are considerably lower than those obtained when the amplitude dependence of the viscosity is neglected. Consequently, large-amplitude viscous damping competes with the gravitational instability at all physical frequencies and could stop the r-mode growth in case this is not done before by non-linear hydrodynamic mechanisms.Comment: 18 pages, 17 figures, changed convention for the r-mode amplitude, version to be published in PR

    Similar works