356 research outputs found

    Extending the Nested Parallel Model to the Nested Dataflow Model with Provably Efficient Schedulers

    Full text link
    The nested parallel (a.k.a. fork-join) model is widely used for writing parallel programs. However, the two composition constructs, i.e. "\parallel" (parallel) and ";;" (serial), are insufficient in expressing "partial dependencies" or "partial parallelism" in a program. We propose a new dataflow composition construct "\leadsto" to express partial dependencies in algorithms in a processor- and cache-oblivious way, thus extending the Nested Parallel (NP) model to the \emph{Nested Dataflow} (ND) model. We redesign several divide-and-conquer algorithms ranging from dense linear algebra to dynamic-programming in the ND model and prove that they all have optimal span while retaining optimal cache complexity. We propose the design of runtime schedulers that map ND programs to multicore processors with multiple levels of possibly shared caches (i.e, Parallel Memory Hierarchies) and provide theoretical guarantees on their ability to preserve locality and load balance. For this, we adapt space-bounded (SB) schedulers for the ND model. We show that our algorithms have increased "parallelizability" in the ND model, and that SB schedulers can use the extra parallelizability to achieve asymptotically optimal bounds on cache misses and running time on a greater number of processors than in the NP model. The running time for the algorithms in this paper is O(i=0h1Q(t;σMi)Cip)O\left(\frac{\sum_{i=0}^{h-1} Q^{*}({\mathsf t};\sigma\cdot M_i)\cdot C_i}{p}\right), where QQ^{*} is the cache complexity of task t{\mathsf t}, CiC_i is the cost of cache miss at level-ii cache which is of size MiM_i, σ(0,1)\sigma\in(0,1) is a constant, and pp is the number of processors in an hh-level cache hierarchy

    Determination of Phase Fraction, Lattice Parameters and Crystallite Size in Mechanically Alloyed Fe-Ni Powders

    Get PDF
    This is the first systematic report on the synthesis of mechanically alloyed Fe-Ni powders ball milled at liquid nitrogen temperature. Pure Fe-Ni samples were ball milled in a SPEX 8000 shaker mill at liquid nitrogen temperature. X-ray diffractometry was used to determine the phase fractions of the bcc and fcc phases in the alloys and to determine the lattice parameters and crystallite size. The main objective of this project is to study how the milling at low temperatures affects the region of two phase co-existence, phase structure and crystallite size. It was found that the composition ranges of the bcc and fcc single phase regions were extended well beyond the equilibrium ranges. The results obtained for the samples ball milled at liquid nitrogen temperature were compared to the previous samples ball milled at room temperature

    Role of Wolbachia in shaping the microbiome of Drosophila melanogaster

    Get PDF
    The endosymbiotic bacteria Wolbachia and the gut microbiome have independently been shown to affect several aspects of insect biology, including reproduction, development, lifespan, stem cell activity and resistance to human pathogens in insect vectors. This research shows that Wolbachia, which reside mainly in the fly germline, affect the microbial species present in the gut of a lab reared strain of Drosophila melanogaster. Fruit flies host two main genera of commensal bacteria – Acetobacter and Lactobacillus. Wolbachia-infected flies have significantly reduced titers of Acetobacter. Analysis of the microbiome of axenic flies fed with equal proportions of both bacteria shows that Wolbachia’s presence is a determinant in the microbiome composition throughout fly development. This effect of Wolbachia on the Drosophila microbiome is host genotype-dependent. To investigate the mechanism of microbiome modulation, the effect of Wolbachia on Imd and ROS pathways, the main regulators of immune response in the fly gut was measured. Wolbachia’s presence did not cause significant gene expression changes of the effector molecules in either pathway. It was also found that Wolbachia slightly reduce the relative length of the acidic region of the gut. However, this observation lacks the robustness necessary to provide a mechanism for the significantly reduced Acetobacter levels. Furthermore, microbiome modulation is not due to direct interaction between Wolbachia and the gut microbes,as confocal microscopy shows that Wolbachia is absent from the gut lumen. These results indicate that the mechanistic basis of the modulation of microbiome composition by Wolbachia is more complex than direct bacteria interaction or Wolbachia’s effect on fly immunity. The findings reported here highlight the importance of considering the gut microbiome composition and host genetic background during Wolbachia-induced phenotypic studies and microbial based-disease vector control strategies

    Exosomal derived HLA-B-Associated Transcript-3 is a ligand for NKp30 and regulates Natural Killer Function in Innate and Adaptive Immune Responses

    Get PDF
    Natural Killer cells are key effector cells of the innate immune system. They were originally described as the first line of defense against infections and tumor cells that secrete cytokines and kill target cells without prior antigen stimulation. Emerging evidence reveals that NK cell activation is a more complex process and includes priming of NK cells that in turn shape the adaptive immune response mainly by interacting with dendritic cells. The activity of NK-cells is mainly mediated through their wide variety of receptors, activating and inhibitory in function. Among the versatile receptors present on NK cells, the activating receptor NCR3, NKp30 is a major receptor involved in both direct killing of target cells and mutual NK and dendritic cell activation. However, the cellular ligands on tumor-transformed cells and DCs have remained elusive. This study identifies HLA-B-associated transcript 3 (BAT3), as a tumor-associated cellular ligand for NKp30 and moreover it is shown that BAT3 is expressed in immature dendritic cells and released as exosomes into the extracellular environment. Further it demonstrates that BAT3 is expressed on the surface of exosomes either derived from tumor cells or iDCs activate NK cells resulting in a strong release of major cytokines (TNFα and IFNγ) and enhanced cytotoxicity. Moreover, BAT3 regulates the NK cell-mediated cytotoxicity against iDCs. Thus, a novel concept is proposed for target cell recognition by NK cells beyond "missing-self" and "induced-self", mediated through extracellular factors. These factors may be derived from the target cells as well from the accessory cells. Moreover, these data also suggest that the reciprocal activation of NK cells and iDCs is partly due to BAT3 presenting exosomes independent from direct cell contacts

    Improving Data Transmission Rate with Self Healing Activation Model for Intrusion Detection with Enhanced Quality of Service

    Get PDF
    Several types of attacks can easily compromise a Wireless Sensor Network (WSN). Although not all intrusions can be predicted, they may cause significant damage to the network and its nodes before being discovered. Due to its explosive growth and the infinite scope in terms of applications and processing brought about by 5G, WSN is becoming more and more deeply embedded in daily life. Security breaches, downed services, faulty hardware, and buggy software can all cripple these enormous systems. As a result, the platform becomes unmaintainable when there are a million or more interconnected devices. When it comes to network security, intrusion detection technology plays a crucial role, with its primary function being to constantly monitor the health of a network and, if any aberrant behavior is detected, to issue a timely warning to network administrators. The current network's availability and dependability are directly tied to the efficacy and timeliness of the Intrusion Detection System (IDS). An Intrusion-Tolerant system would incorporate self-healing mechanisms to restore compromised data. System attributes such as readiness for accurate service, supply identical and correct data, confidentiality, and availability are necessary for a system to merit trust. In this research, self-healing methods are considered that can detect intrusions and can remove with intellectual strategies that can make a system fully autonomous and fix any problems it encounters. In this study, a new architecture for an Intrusion Tolerant Self Healing Activation Model for Improved Data Transmission Rate (ITSHAM-IDTR) is proposed for accurate detection of intrusions and self repairing the network for better performance, which boosts the server's performance quality and enables it to mend itself without any intervention from the administrator. When compared to the existing paradigm, the proposed model performs in both self-healing and increased data transmission rates.

    Combining Thermal Sensing And Facial Recognition For Efficient Prevention Of Covid Spread

    Get PDF
    In present prevailing covid-19 situation medical industry had prescribed mandatory precautionary measures to reduce the disease spread. Face mask wearing and temperature monitoring of people in public places is a mandatory practice done across the world in common. People were appointed for this purpose of temperature checking and monitoring the wearing of face mask by people  at  public places . The traditional process being practiced involves a human involvement which in turn is an alarming threat that the person involved in this monitoring process can be affected by the disease and might act as a carrier unless the person  is diagnosed with symptoms at the earliest. The primary goal of the paper is to avoid the human to human interaction and automating the process of implementing covid prevention practice at public places. This can be achieved by implementing a face mask recognition system based on opencv-python which detects the wearing of face mask of people in public places  by using face recognition  technology and temperature monitoring is done by an arduino controlled human body temperature sensors . The collected data is fed to the monitoring person who is in a remote place and human assistance can be provided if any abnormality is recorded. Thus the proposed system provides and autonomous approach to the purpose of face mask and temperature monitoring in a minimalistic and feasible approac

    INTENT DRIVEN SCHEMA FOR TEMPORAL GRAPH STORAGE AND RETRIEVAL

    Get PDF
    A network data analytics system visualized as a temporal graph (network state as a function of time)in which unbounded streams of data are processed and stored can result in the data size becoming extra-ordinarily large and unmanageable. Thus, efficient partitioning schemes are often needed to partition the data. In some instances, data in a temporal graph system can be partitioned either temporally or spatially. This proposal provides techniques to facilitate partitioning (both temporally and spatially)and persistence of data based on the application intent

    Dendritic Cells Release HLA-B-Associated Transcript-3 Positive Exosomes to Regulate Natural Killer Function

    Get PDF
    NKp30, a natural cytotoxicity receptor expressed on NK cells is critically involved in direct cytotoxicity against various tumor cells and directs both maturation and selective killing of dendritic cells. Recently the intracellular protein BAT3, which is involved in DNA damage induced apoptosis, was identified as a ligand for NKp30. However, the mechanisms underlying the exposure of the intracellular ligand BAT3 to surface NKp30 and its role in NK-DC cross talk remained elusive. Electron microscopy and flow cytometry demonstrate that exosomes released from 293T cells and iDCs express BAT3 on the surface and are recognized by NKp30-Ig. Overexpression and depletion of BAT3 in 293T cells directly correlates with the exosomal expression level and the activation of NK cell-mediated cytokine release. Furthermore, the NKp30-mediated NK/DC cross talk resulting either in iDC killing or maturation was BAT3-dependent. Taken together this puts forward a new model for the activation of NK cells through intracellular signals that are released via exosomes from accessory cells. The manipulation of the exosomal regulation may offer a novel strategy to induce tumor immunity or inhibit autoimmune diseases caused by NK cell-activation

    ANTIFUNGAL PROPERTIES OF SECONDARY METABOLITES OF AZADIRACHTA INDICA AND LAWSONIA INERMIS – AN IN SILICO STUDY

    Get PDF
    Objective: This study was aimed to inhibit the sulfite reductase using naturally obtained secondary metabolites of common plants Azadirachta indica and Lawsonia inermis.Methods: The active ingredients of neem and henna were selected and the.sdf files of these were downloaded from PubChem database. Converted the.sdf files to.pdb files with the help of OPENBABEL software which is prerequisite to dock. The three-dimensional structure was incurred from the template of homology of sulfite reductase using MODELLAR software version 9.0. Docking of sulfite reductase with the ligands was performed using iGEMDOCK and Autodock Vina softwares. The physicochemical, pharmacokinetic, drug-likeness, lead-likeness, and toxicological properties were obtained by SWISSADME and admetSAR online tools.Results: The active ingredients show an excellent affinity with the sulfite reductase which obtained was tabulated and the significant properties of a ligand were showing that these can be an investigational new drug entity.Conclusion: In this research, it can concluded that the secondary metabolites obtained from plants were inhibiting the induction of sulfite reductase thereby inhibiting Sulfite Assimilation Pathway leads to commove the amino acid metabolism of organism which shows unique in fungi
    corecore