
Decorrelation of User Defined Function Invocations

in Queries

Varun Simhadri #1, Karthik Ramachandra ∗2, Arun Chaitanya #3, Ravindra Guravannavar #4, S. Sudarshan ∗5

IIT Hyderabad, India 6

1
varun.simhadri@netapp.com,

3
arun@worksap.co.jp,

4
ravig@acm.org

∗ IIT Bombay, India
2
karthiksr@cse.iitb.ac.in,

5
sudarsha@cse.iitb.ac.in

Abstract—Queries containing user-defined functions (UDFs)
are widely used, since they allow queries to be written using a mix
of imperative language constructs and SQL, thereby increasing
the expressive power of SQL; further, they encourage modularity,
and make queries easier to understand. However, not much
attention has been paid to their optimization, except for simple
UDFs without imperative constructs. Queries invoking UDFs with
imperative constructs are executed using iterative invocation of
the UDFs, leading to poor performance, especially if the UDF
contains queries. Such poor execution has been a major deterrent
to the wider usage of complex UDFs.

In this paper we present a novel technique to decorrelate
UDFs containing imperative constructs, allowing set-oriented
execution of queries that invoke UDFs. Our technique allows
imperative execution to be modeled using the Apply construct
used earlier to model correlated subqueries, and enables transfor-
mation rules to be applied subsequently to decorrelate (or inline)
UDF bodies. Subquery decorrelation was critical to the wide use
of subqueries; our work brings the same benefits to queries that
invoke complex UDFs. We have applied our techniques to UDFs
running on two commercial database systems, and present results
showing up to orders of magnitude improvement.

I. INTRODUCTION

Most database systems provide support for invoking user-
defined functions (UDFs) from SQL queries. Calls to UDFs
can appear in the SELECT, FROM, WHERE and the HAVING

clause of an SQL query. UDFs support a rich set of imperative
language constructs such as assignment, conditional branching
and loops, and also allow invocation of SQL queries. UDFs
encourage modularity, and programmers prefer imperative
constructs for many tasks [1]. UDFs also make it possible to
express certain tasks that are hard or impossible to write in
standard SQL.

Most database systems today inline simple, single-
statement UDFs into the query that invokes them. However,
to the best of our knowledge, they treat complex UDFs with
imperative constructs as black boxes. When a UDF appears in
the SELECT or the WHERE clause, it is invoked for every tuple
produced by the FROM clause, after the application of simple
predicates.

Example 1 shows a query which invokes a UDF in its
SELECT clause. The UDF returns the service level for a given

6Work of authors 1, 3 and 4 done partly while at IIT Hyderabad. Current
affiliations are NetApp, Works Applications, and Independent Consultant,
respectively.

Example 1 Query with a scalar UDF

create function service level(int ckey) returns char(10) as
begin

float totalbusiness; string level;

select sum(totalprice) into :totalbusiness
from orders where custkey=:ckey;

if(totalbusiness > 1000000)
level = ‘Platinum’;

else if(totalbusiness > 500000)
level = ‘Gold’;

else level = ‘Regular’;
return level;

end

Query: select custkey, service level(custkey) from customer;

Example 2 Decorrelated Form of Query in Example 1

select c.custkey, case e.totalbusiness > 1000000: ‘Platinum’
case e.totalbusiness > 500000: ‘Gold’
default: ‘Regular’

from customer c left outer join e on c.custkey=e.custkey;

where e stands for the query:
select custkey, sum(totalprice) as totalbusiness
from orders group by custkey;

customer. It executes a scalar SQL query to compute the
customer’s total business, which it then uses to decide the
service level in a nested if-then-else block. The execution plan
for queries such as the one in Example 1 on a commercial
database system, is to invoke the UDF for each tuple. Such
iterative plans can be very inefficient, since queries within the
function body may be executed multiple times, once for each
outer tuple.

These plans can be compared to correlated execution of
parameterized nested subqueries. In the case of nested sub-
queries, decorrelation techniques have been well studied [2],
[3], [4], [5], [6]. The Apply operator was introduced by
Galindo-Legaria et al. [5] to explicitly model correlated execu-
tion of subqueries; [5] also presented transformation rules that
can replace Apply operators by standard relational operations
such as joins, under certain conditions, thereby decorrelating
the query. Query decorrelation enables set-oriented execution

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Archive of Indian Institute of Technology Hyderabad

https://core.ac.uk/display/38679867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

plans by rewriting a nested query as a flat query. Once a query
is decorrelated, the query optimizer can consider alternative
join algorithms such as hash-join and merge-join, in addition
to nested loops join.

However, decorrelating UDF invocations, such as the one
in Example 1 is a more complex task due to the presence
of various imperative constructs. Example 2 shows the same
query after decorrelation of the UDF invocation. This trans-
formed query enables set-oriented execution plans, thereby
expanding the space of alternative plans for an optimizer. Such
transformations have not been addressed so far, to the best of
our knowledge. In general, it may not be possible to completely
decorrelate queries containing all types of UDFs, but as we
show in this paper, there exists a large class of UDFs that can
be decorrelated.

In this paper, we extend existing query decorrelation tech-
niques to decorrelate invocations of complex side effect free
UDFs with imperative constructs. In particular, we make use
of the Apply operator introduced in Galindo-Legaria et al. [5]
to decorrelate subqueries. We extend the Apply operator to
model UDF invocation and execution, and use transformation
rules given in [5], as well as new ones that we propose, to
decorrelate UDF invocations.

Our contributions in this paper are as follows:

• We show how queries containing UDFs can be given
an algebraic representation. Using our extensions to
the Apply operator, we show how UDFs with various
imperative constructs such as assignments, conditional
branching, and loops can be modeled as expressions.

• We propose a set of transformation rules that can be
used in a cost-based optimizer to perform decorrela-
tion. These transformation rules work with existing
rules for query decorrelation, and enable the applica-
tion of already known rules.

• Our techniques are applicable to a large class of UDFs
seen in practice. While the rules can be used in a cost-
based optimizer, in the absence of access to a cost-
based optimizer, they can also be used to implement
a query rewriting system outside of the database. We
have built such a query rewriting tool to show the
effectiveness of our techniques.

• We have conducted a detailed experimental evaluation
of our techniques by performing query rewriting,
and executing original and rewritten queries on two
commercial database systems. Our experiments show
an order of magnitude improvement in performance
due to decorrelation of UDF invocations.

The paper is organized as follows. We start with an
overview of our approach in Section II. We define the terminol-
ogy used in this paper in Section III. Our technique is described
in detail in Section IV, Section V, and Section VI. We consider
UDFs with loops in Section VII. We discuss related work in
Section VIII. In Section IX, we describe our implementation,
present our experimental results in Section X and conclude in
Section XI.

σ

G
C=min(supplycost)

A

σ

x

supplycost=C

suppkey,partkey

partsupp

partsupp

partkey=p1.partkey

Π

Fig. 1. Representing Correlated Evaluation using Apply

II. OVERVIEW OF OUR APPROACH

We now briefly review known subquery decorrelation tech-
niques that we build on, and then give an overview of our
approach for decorrelation of UDF invocations.

The Apply operator was introduced in [5] to explicitly
model correlated execution of subqueries. It is similar to
the Map operator in functional programming languages, and
evaluates a parameterized expression E1(t) for every tuple t
in the result of another expression E0. The expression E0 is
called the outer expression, and the parameterized expression
E1 is called the inner expression. The Apply operator can
be annotated with a join type, which could be one of cross
product (×), which is the default if the annotation is omitted,
left outer-join (✶), left semijoin (×) and left antijoin (×̄).

The formal definition of the Apply operator, as given in [5]
is as follows:

E0 A⊗ E1 =
⋃

t∈E0

({t} ⊗ E1(t))

where ⊗ is one of the join types listed above. Consider the
nested query on the TPC-H schema shown below.

select suppkey, partkey from partsupp p1
where supplycost =

(select min(supplycost) from partsupp p2
where p1.partkey = p2.partkey)

Using the Apply operator, an expression for the minimum
cost supplier query can be written as follows.

Πsuppkey, partkey(σsupplycost=C(ρp1(partsupp) A× e))

where e = GC=min(supplycost)(σpartkey=p1.partkey(partsupp)). The
expression tree is pictorially shown in Figure 1. A number
of algebraic transformation rules are presented in [5] and
[6], which remove the Apply operator when possible, thereby
replacing correlated evaluation by set-oriented alternatives.
These transformation rules increase the space of alternative
plans for a given query. For example, the transformation rules
can bring the above discussed min-cost supplier query into the
following form.

Πsuppkey, partkey(σsupplycost=C(partsupp ✶ e))

where e = partkeyGC=min(supplycost)(partsupp). The work of [5]
and [6] bring most of the earlier decorrelation techniques [2],
[3], [4] under a common framework amenable for cost-based

optimization, and introduce additional transformations. In par-
ticular, decorrelation is cost-based, since correlated evaluation
remains as an alternative for the optimizer to consider.

In this paper, we show how the Apply operator can be
extended to model UDF invocations and imperative constructs.
We consider UDFs with imperative statements such as variable
assignment, conditional branching and loops. Our approach for
decorrelating UDF invocations involves the following steps.

1) Construct a parameterized expression tree corresponding
to the UDF, using the extended Apply operators. The
expression is parameterized in the sense that it uses
variables whose values are assigned by the calling context.
The calling context may be a query or another UDF.

2) Merge the expression tree constructed for the UDF and
the expression tree of the outer query block. During this
step the parameters for the UDF expression are bound to
the attributes of the calling context.

3) Remove the Apply operators (and thus perform decorre-
lation) using the transformation rules that we present in
Section V, as well as known transformation rules such as
those presented in [5].

We currently consider side effect free UDFs written in SQL with
procedural extensions. However, our work can be extended to
UDFs written in other languages, which is an area of future
work. Our techniques can be used with scalar and table valued
UDFs; however, updates and deletes to table valued attributes
are not handled currently.

III. TERMINOLOGY

Before we describe our approach to decorrelate UDF invo-
cations, we define the terminology used in this paper.

1) The Single relation (S): This is a relation with a single
empty tuple and no attributes. It is used to return scalar
constants or computed values as relations.

2) ⊥: Value of an uninitialized variable. It can be either null
or a language specific default value for the data type.

3) Πd: Projection without duplicate removal.
4) Conditional Expressions: We denote conditional expres-

sions using the following notation:
(p1?e1 : p2?e2 : . . . : en)

An expression of this form evaluates to e1 if predicate p1
evaluates to true, to e2 if p2 evaluates to true and so on. If
none of the predicates p1, . . . , pn−1 evaluates to true, the
expression evaluates to en. The SQL case statement is
analogous to a conditional expression, and is a convenient
way to compute an expression in a predicated manner.

5) Generalized projection [7]: Projection (both with and
without duplicate removal) can involve expressions. The
result of an expression e can be assigned a new name
n, using the syntax e as n. Note that the expression can
invoke a UDF and can also be a conditional expression as
described above.

6) Rename operator [7]: ρr(a1,...,an)(e) returns the result
of relational algebra expression e under the name r with
attributes renamed as a1, . . . , an. When only attribute
renaming is needed we use ρ (a1,...,an)(e). Individual
attributes can also be renamed using the as keyword.

7) Group-by operator: a1,...,an
Gf1(),...fm()(e) is used to

denote a group-by expression, where a1, . . . an are the

grouping columns, and f1, . . . , fm are the aggregate func-
tions. Grouping columns are optional.

As mentioned earlier, we extend the Apply operator to
model imperative constructs in the UDF. We define three
extensions of the standard Apply operator.

1) Apply-Bind extension: UDF invocations implicitly map
formal parameters to actual parameters. In order to rep-
resent UDF invocations algebraically, we define a bind
extension to the Apply operator. This extension allows the
Apply operator to optionally accept a list of parameter
mappings of the form p1 = a1, . . . , pn = an, where
a1, . . . , an are the attributes of the left child of the Apply,
and the right child is parameterized by p1, . . . , pn. Such a
mapping, if provided, is performed by the operator before
evaluating its right child. We denote this as follows:

E1 A
⊗

bind:p1=a1,...,pn=an
E2(p1, . . . , pn)

2) Apply-Merge extension (AM): This is used to model
assignment statements. The right child of the apply op-
erator computes the values for attributes which are then
assigned to (or merged with) the attributes present in the
left child.
Let r be a relation with schema R = (a1, . . . , an). Let
e(r) be a parameterized single-tuple expression, whose
result has the schema S = (b1, . . . , bm). Let L be a
sequence of assignments of the form a1 = b1, a2 =
b2, . . . ak = bk. Now, Apply-Merge r AM(L) e(r) can be
defined procedurally as follows: For each tuple t ∈ r,
evaluate s = e(t). Then produce t′ as an output tu-
ple, where t′ is obtained from t after performing the
assignments specified in L. We can define the operation
algebraically as follows:

r AM(L) e(r) = ΠX(r A× e(r))

where X = r. ∗ −{a1, . . . , ak}, b1 as a1, . . . , bk as ak.
The assignment list L is optional. When, omitted it is
assumed to be of the form r.c1 = s.c1, . . . , r.ck = s.ck,
where c1, . . . , ck are the attributes common to R and S.
Note that the above definition assumes e(r) to be ex-
actly one tuple. If the r.h.s expression of an assignment
statement results in more than one tuple, an exception
is thrown. If it is empty, then it may either throw
an exception, or perform no assignment and retain the
existing value. The semantics of assignment statements
when e(r) is empty, or has more than one tuple, varies
across systems, and modeling it is part of our future work.

3) Conditional Apply-Merge operator (AM
C): Let r be

a relation with schema R = (a1, . . . , an). Let et(r)
and ef (r) be parameterized single-tuple expressions, and
p(r) be a parameterized predicate expression. Now, the
Conditional Apply-Merge operation is defined as follows:

r AM
C (p(r), et(r), ef (r)) =

r AM (σp(r)(et(r)) ∪ σ¬p(r)(ef (r)))

This operator is used to model assignments within if-then-
else blocks in the body of a UDF; more details and an
example are given in Section IV.

With this background, we now proceed to describe our
approach of UDF decorrelation.

Example 3 UDF with a Single Arithmetic Expression

create function discount(float amount) returns float as
begin

return amount * 0.15;
end

Query: select orderkey, discount(totalprice) from order;

Π retval

amount*0.15 as retval
Π (S)

S

AX

Fig. 2. Expression Tree for the UDF in Example 3

IV. ALGEBRAIC REPRESENTATION OF UDFS

The first step towards decorrelating a UDF invocation is to
construct a parameterized algebraic expression corresponding
to the UDF. This expression is later merged with the expression
tree of the calling query or function.

Consider the UDF of Example 3, which contains a single
statement returning the value of an arithmetic expression. The
expression tree constructed for the UDF of Example 3 is shown
in Figure 2. This tree has one Apply operation whose left child
is the Single relation, and the right child is a projection on the
Single relation that computes the arithmetic expression. Finally
there is a projection on the return value.

Obviously, this expression is not in its simplest form,
and can be simplified. But it shows a way to express scalar
computations as relational expressions, and we show how this
generalizes to any statement in the body of a UDF.

Similar expression trees can be constructed for statements
with different kinds of expressions (logical, relational) and
datatypes. As another example, consider the query of Exam-
ple 4, in which the UDF contains a single parameterized query
execution statement. The expression constructed for the UDF

is shown in Figure 3. We note that many commercial database
systems inline single statement UDFs such as Example 3 and
Example 4 and optimize them. However, we have considered
these examples to illustrate our technique of building algebraic
expressions for statements in UDFs.

We now propose a general technique to algebraize arbitrary
side effect free UDFs with conditional branching and other
imperative constructs. In this section we handle UDFs without
loops, and describe our approach to handle UDFs with loops
in Section VII.

We use the control flow graph (CFG) [8], a commonly
used program representation, to explicitly capture control flow
through the statements of a function. Each node in a CFG

corresponds to a statement in the UDF. A directed edge
between two nodes represents control flow. The CFG has a start
node, from which execution begins, and an end node where
execution terminates.

Example 4 UDF with a single SQL query

create function totalbusiness(int ckey) returns int as
begin

return select sum(totalprice) from orders
where custkey=:ckey;

end

Query: select custkey, totalbusiness(custkey) from customer;

S
σ

G

Ax

custkey=ckey

orders

sum(totalprice) as retval

retval
Π

Fig. 3. Expression Tree for the UDF in Example 4

In order to suit our needs, if-then-else blocks are logically
treated as single nodes. Nested if-then-else blocks are treated
as nested logical nodes. The CFG for the UDF in Example 1 is
shown in Figure 4 with nodes labeled N1, . . . , N8. The logical
nodes with nested if-then-else blocks are labeled L0, . . . , L4,
and shown in dashed boxes where applicable. The logical block
L3 has two nested logical blocks denoted as L3.1 and L3.2.
As it can be seen, the resulting graph (considering top-level
logical nodes) would have no branching.

Each node Ni in the CFG contributes to the expression
tree. The contribution of node Ni is denoted by ENi

, and the
contribution of a logical node Li is denoted by ELi

. These
contributions are computed as follows.

ELi
=

S if Li is Start

Πr as l(S) if Li is an assignment l = r

(p, et, ef) if Li is an if-then-else block

The expression EL0
for the start node is the Single relation.

An assignment statement of the form l = r is represented as a
generalized projection on the Single relation. Note that r can be
a program expression, a scalar SQL query, or a UDF invocation.
If r is a scalar SQL query, we use its relational expression. If
it is a UDF invocation, we first build an expression for the
called UDF, and then use it in the projection. If an algebraic
representation cannot be built for the called UDF, it is left
as a function invocation. Variable declarations are treated as
assignments with the r.h.s. as ⊥, i.e., the default uninitialized
value for the datatype.

An if-then-else block has two successors corresponding to
the then and the else parts. In this case, we recursively define
the contribution of the if-then-else block as the set of expres-
sions (p, et, ef). Here p is the predicate of the if statement, et
is the expression tree corresponding to the then branch (i.e., p
is true), and ef is the expression tree corresponding to the else
branch (i.e., p is false). This expressions (p, et, ef) captures
the contribution of the entire conditional block and hence the
block can be logically seen as a single node in the CFG. All

level=’Gold’

return level

level=’Platinum’ level=’Regular’

if (totalbusiness > 500000)

Start

N4

if(totalbusiness > 1000000)

select sum(totalprice) into totalbusiness
from orders where custkey=ckey;

float totalbusiness; string level;

N2

N3

N1

FALSE

TRUE FALSE

N8

N7N6

N5

TRUE

L2

L3

L1

L0

L4

N0

L3.2

L3.1

Fig. 4. CFG for the UDF in Example 1

the contributions of individual nodes are then combined to get
Eudf , the expression tree for the UDF as shown below.

Eudf = EL0

for i from 1, . . . , k do // k is the # of logical nodes
oi = chooseApplyType(Li)
Eudf = Eudf Aoi ELi

end

Eudf is initially assigned to EL0
corresponding to Start.

Then, for every successive logical node Li, we add an Apply
operation whose left child is the expression built so far (Eudf),
and right child is ELi

.

The Apply operator’s type oi depends on the correspond-
ing node in the UDF. Variable declarations use the Apply-
cross(A×) operator. Assignment of values to previously de-
fined local variables is algebraized using Apply-Merge(AM).
The assignment of results of a scalar query to scalar variables
also uses Apply-Merge. Conditional branching nodes (i.e. if-
then-else blocks) use the Conditional Apply-Merge (AM

C)
operator. The return clause is mapped to an apply-cross
(A×) with a relational expression corresponding to the return
expression. As a convention, we always alias the return value
to the name retval. Finally, a projection on retval is added to
complete the expression for the UDF.

We now illustrate the construction of the expression tree for
the CFG in Figure 4. The expressions with their corresponding
Apply operator types are as follows:

eL1
= Π0 as totalbusiness, null as level(S)

Ao1 = A×

eL2
= πv(Gsum(totalprice) as v(σcustkey=ckey(orders))

Ao2 = AMtotalbusiness=v

eL3
= (totalbusiness > 1000000, eL3.1

, eL3.2
)

Ao3 = AM
C (totalbusiness > 1000000)

A C

M
eL4

A X

A
X

eN4S
A

X

eN6S

A
X

eN7S

C

M

S

A

eL2

eL1S

AM

XA

Π retval

(totalbusines>500000)

(totalbusines>1000000)

Fig. 5. Expression Tree for the CFG in Figure 4

Since L3 is an if-then-else block, the expression eL3
is

defined recursively in terms of the predicate at N3, the true
branch at L3.1 and the false branch at L3.2. The conditional-
apply-merge operator is used. Since L3.1 comprises of a single
node N4, its expression would be (S A× eN4

) which is the
same as eN4

. In general, the expression for any logical node Li

that comprises of a single node Nj would be eNj
(see rule R1

of Table II). The expression for L3.2 which is another if-then-
else block, is defined in terms of eN6

and eN7
. The remaining

expressions and operator types are as below:

eL3.1
= eN4

= Π‘Platinum′ as level(S)

eL3.2
= (totalbusiness > 500000, eN6

, eN7
)

Ao3.2= AM
C (totalbusiness > 500000)

eN6
= Π‘Gold′ as level(S)

eN7
= Π‘Regular′ as level(S)

eL4
= Πlevel as retval(S)

Ao4 = A×

Using these expressions and Apply operators, we construct
the tree as described. The resulting tree for the UDF in Figure 4
is shown in Figure 5. For clarity, the tree shows the predicate
at each conditional-apply-merge operation. This tree is further
simplified while removing the Apply operators.

V. EXPRESSION TREE MERGING

Once the expression tree is constructed for the UDF, it
needs to be correlated with the query that invokes the UDF.
This is very similar to the way nested subqueries are correlated
with the outer query except for one key difference: the formal
parameters of the UDF have to be bound to their corresponding
actual parameters produced by each tuple of the outer query
block. To this end, we make use of the enhanced Apply
operation (Apply with the bind extension) defined in Section III
to merge the expression tree of the outer query with the tree
constructed for the UDF.

Let Eouter and Eudf be the expression trees corresponding
to the outer query block and the UDF respectively. Also,

A bind:fp1=a1,...,fpn=an

...

... E
func

(fp1,...fpn)

A

func(a1,...,an)...

...

Fig. 6. Expression tree merging

let fp1, . . . , fpn denote the formal parameters of the UDF,
and a1, . . . , an denote attributes of Eouter that are the actual
parameters to the UDF. Irrespective of whether the UDF

invocation is in the where clause or the select clause, Eouter

will have the UDF invocation as the right child of an Apply
operation [5] (as shown in the LHS of Figure 6). Now, we
merge them as follows:

1) The UDF invocation is replaced by its algebraic form
(Eudf) as the right child of the Apply operator. In Figure 6,
the invocation func(p1, . . . , Pn) is replaced by its alge-
braic form Efunc. The expression Efunc is parameterized
by formal arguments fp1, . . . , fpn

2) The list of parameter mappings of the form fp1 =
a1, . . . , fpn = an is passed to the Apply operator (with
the bind extension) as illustrated in Figure 6. These
assignments are performed by the Apply operator before
evaluating its right child (Eudf).

We have now constructed a merged expression tree for the UDF

and its calling query block. In the next section, we describe
how to remove the Apply operators and simplify this tree.

VI. REMOVAL OF APPLY OPERATORS

The Apply operators present in the merged query tree
are removed using the equivalence rules given by Galindo-
Legaria et al. [5], and additional equivalence rules presented
in this paper. For completeness, we show some of the known
equivalence rules (rules K1−K6) in Table I.

Equivalence rules (R1 − R9) given in Table II are required
in order to express extended Apply operations in terms of
standard Apply or other relational operations. This enables ap-
plication of known rules, thereby simplifying and decorrelating
the expression. We now briefly describe rules R1 − R9. Let r
be a relation with schema R(a1, . . . , an).

Rule R1: This rule removes the Apply-cross operator when
one of its children is Single.

r A× S = S A× r = r

i.e., if one of the children of an A× is the Single relation and
the other child is r, the result of the operation is r.

Rule R2: This rule enables the removal of Apply-merge when
its right child is a projection on Single.

rAM(ΠA(S)) = Πd
B,A(r)

where A=(e1 as a1, . . . , ek as ak) and B=R-{a1, . . . , ak}. i.e.,
if the inner expression of an AM is a projection on Single,

then the operation can be written as a projection on r with
common attributes being projected as from Single.

Rule R3: The function composition rule for the generalized
projection operator where f and g are pure functions:

Πf(B)(Πg(A) as B(r)) = Πf(g(A)(r)

Rule R4: Apply-merge removal. This rule follows from the
definition of Apply-merge (Section III).

Rule R5: Move a projection after the Apply.

(Πd
A(r))A

⊗e = Πd
A(rA

⊗e)

where A=(a1, . . . , ak, e1 as b1, . . . em as bm), and
{b1, . . . , bm} are computed on r. This rule holds provided the
inner expression e of the Apply does not use any computed
attributes {b1, . . . , bm} of the outer expression.

Rule R6: Conditional-Apply removal. This rule follows from
the definition of Conditional-Apply (Section III).

Rule R7: Union to generalized projection. A union between
expressions with mutually exclusive selection predicates can
be written as a generalized projection with a conditional
expression.
Πe1 as a(σp1

(r)) ∪ Πe2 as a(σp2
(r))=Π(p1?e1:p2?e2) as a(r)

Rule R8: This rule can be derived from rules R6 and R7 to
express a Conditional-Apply as projection directly, whenever
et(r) and ef(r) are scalar valued.

Rule R9: Apply-bind removal. An Apply operation with bind
extension can be removed by replacing all occurrences of
formal parameters (p1, . . . , pn) in its right child by actual
parameters (a1, . . . , an).

r A⊗

bind:p1=a1,...,pn=an
e(p1, . . . , pn)=r A⊗e(a1, . . . , an)

Using the above rules R1 − R9, we now illustrate the
construction of the merged query tree and removal of Apply
operators for the examples we have been considering so far.
First, let us consider the query in Example 3. For this example,
Eouter is given by:

Eouter = Πorderkey, discount(totalprice) as d(orders)

This can be written using the Apply operator (rule K6) as:

Eouter = Πorderkey, d(orders A×
ρd(discount(totalprice)))

The expression for the UDF, Eudf is shown in Figure 2, and
the corresponding merged query tree is shown in Figure 7.
This merged expression can now be simplified and the Apply
operators removed by using rules in [5] (Table I) and Table II.
Applying rule K4 and R1 for the innermost Apply operator, we
get the expression:

Πorderkey, retval as d(orders A×

(amount=totalprice)Πamount*0.15 as retval(S))

Note that the above expression still uses the formal argument
amount, which is replaced by the actual argument when the

K1 r A⊗e = r ⊗true e, if e uses no parameters from r

K2 r A⊗(σp(e)) = r ⊗p e, if e uses no parameters from r

K3 r A×(σp(e)) = σp(rA
×e)

K4 r A×(Πv(e)) = Πv∪schema(r)(rA
×e)

K5 r A×(AGF (e)) = A∪schema(r)GF (rA
×e)

K6 Πf(A) as a0,a1,...,an
(r) = Πa0,a1,...,an

(r A× ρa0
(f(A))

TABLE I. KNOWN RULES FOR CORRELATION REMOVAL [5]

R1 r A× S = S A× r = r

R2 r AM(Πa1 as e1,...,ak as ek(S)) = Πd
A,e1 as a1,...,ek as ak

(r)

where A denotes r. ∗ −{a1, . . . , ak}

R3 Πf(B)(Πg(A) as B(r)) = Πf(g(A)(r)

R4 r AM(L) e(r) = ΠX(r A× e(r))

where e(r) is a single tuple expression, L is of the form: a1 = b1, . . . ak = bk,

and X denotes R− {a1, . . . , ak}, b1 as a1, . . . , bk as ak

R5 (Πd
a1,...,ak, e1 as b1,...em as bm

(r)) A⊗e = Πd
a1,...,ak, e1 as b1,...,em as bm,e.∗(rA

⊗e)

where e does not use any of the computed attributes b1, . . . , bm.

R6 r AM
C (p(r), et(r), ef (r)) = r AM (σp(r)(et(r)) ∪ σ¬p(r)(ef (r)))

where et and ef are single tuple expressions

R7 Πe1 as a(σp1
(r)) ∪ Πe2 as a(σp2

(r)) = Π(p1?e1:p2?e2) as a(r)

where p1 ∧ p2 = false

R8 r AM
C (p(r), et(r), ef (r)) = Πr.∗,(p?et:ef)(r)

where et and ef are scalar valued expressions

R9 r A⊗

bind:p1=a1,...,pn=an
e(p1, . . . , pn) = r A⊗e(a1, . . . , an)

TABLE II. ADDITIONAL EQUIVALENCE RULES

Π retval

amount*0.15 as retval
Π (S)

S

Πorderkey,retval as d

AX

A
X

orders

bind:(amount=totalprice)

Fig. 7. Merged Expression Tree for the Query in Example 3

Apply operator (with bind extension) is removed (rule R9).
Applying rule K4 and R1 again, we get the final expression:

Πorderkey, totalprice*0.15 as d(orders)

Queries that invoke a UDF in their WHERE clause can
be handled in a similar manner. For example, consider the
following query that invokes the same UDF of Example 3 in
its WHERE clause:
select orderkey from orders where discount(totalprice) > 100;

This query is initially represented as follows:

Eouter = Πorderkey(σd>100(orders A×
ρd(discount(totalprice))))

Merging this with the expression for the UDF we get:

Πorderkey(σd>100(ρd(e)))

where e is the expression in Figure 7. After simplification, the
final expression is:

Πorderkey(σretval>100(Πorderkey, totalprice*0.15 as retval(orders)))

Consider the query of Example 4. The query is initially
represented as:

Eouter = Πcustkey, v(customer A×
ρv(totalbusiness(custkey)))

The expression for the UDF is shown in Figure 3. Merging
them, we get:

Πcustkey, v(customer A×
ρv(S A× e))

where e = Πretval(Gsum(totalprice) as retval(σcustkey=ckey(orders))).
Applying rule R1 and simplifying, we get,

Πcustkey, v(customer A× Gsum(totalprice) as v(σcustkey=ckey(orders))

Transformations proposed in [5] can then be used to remove
the correlation and obtain the following expression as one of
the equivalent forms.

Πcustkey, v(customer ✶ (custkeyGsum(totalprice) as v(orders)))

Consider the UDF and query of Example 1. The query is
initially represented as:

Eouter = Πcustkey, v(customer A×
ρv(service level(custkey))

The parameterized expression Eudf constructed for the
UDFis shown in Figure 5. Let p1 and p2 be the predicates
(totalbusiness > 1000000) and (totalbusiness > 500000)
respectively. After applying rule R1 on Eudf , we get:

Eudf = Πlevel as retval(T1 AM
C (p1, eN4

, T2))

where T1 = eL1
AM eL2

and T2 = S AM
C (p2, eN6

, eN7
).

Using rule R4, K4 and R1, T1 can be simplified to:

T1 = Πtotalbusiness, null as level(eL2
)

Using rule R8, we get: T2 = Πp2?eN6
:eN7

(S). Merging Eudf

with Eouter and simplifying with rule K4, we get:

Πcustkey, v(Πtotalbusiness, null as v(T3) A
M
C (p1, eN4

, T2))

where T3 = (customer A× eL2
). Using the transformations in

[5], we get:

T3 = customer ✶ (custkeyGsum(totalprice) as totalbusiness(orders))

Applying rule R8 to the merged expression, we get the follow-
ing final simplified expression. The SQL query corresponding
to this expression is given in Example 2:

Πcustkey,(p1?‘Platinum’:p2?‘Gold’:‘Regular’) as v(T3)

VII. UDFS WITH LOOPS

Loops are encountered quite often in UDFs, and loops that
iterate over cursors defined on query results are common.
Example 5 shows a query on the TPC-H schema which invokes
the UDF totalloss, with a cursor loop in it. For a given supplier,
this query lists out the parts along with the total loss incurred
on the sales of that part. The cursor in the UDF iterates over
each lineitem with the specified part, and computes the profit
gained. If the profit is less than zero, i.e., it is a loss, then it
is accumulated in the total loss variable.

Loops result in a cycle in the control-flow graph of the
UDF, making the task of algebraizing them challenging and,
in some cases, impossible. Since queries involve disk IO, our
main aim is to decorrelate queries inside a UDF with respect
to the outer query block. Now, we describe techniques to
decorrelate UDFs with cursor loops, and table valued UDFs.
Later, we discuss how our approach could be extended to
arbitrary while loops.

Example 5 UDF with a Loop

create function totalloss(int pkey) returns int as
begin

int total loss = 0;
int cost = getCost(pkey);
declare c cursor for

select price, qty, disc from lineitem
where partkey=:pkey;

open c;
fetch next from c into @price, @qty, @disc;
while @@FETCH STATUS = 0

int profit = (@price-@disc) - (cost * @qty);
if (profit < 0)

total loss = total loss - profit;
fetch next from c into @price, @qty, @disc;

close c; deallocate c;
return total loss;

end

Query: select partkey, totalloss(partkey)
from partsupp where suppkey = ?;

A. Algebraizing cursor loops:

The first step to building an expression for a cursor loop
is to build an expression for the body of the loop. The
body of a loop may contain imperative statements, query
execution statements and nested loops, with arbitrary data
dependences [8] between them. Such interstatement data de-
pendences are captured by a data dependence graph (DDG)
using static analysis of the code. The key difference between
statements in a loop body and other statements which are not
part of a loop is that statements in a loop may have cyclic
data dependences [9], [8], i.e, loops may result in cycles in
the DDG). For instance, consider the loop in Example 5. The
value of variable total loss, written in an iteration, is read in
the subsequent iteration, resulting in a cyclic data dependence.

The parameterized expression for a loop with no cyclic
data dependences is built as follows. Let Ec be the expression
for the query on which the cursor is defined, and let Eb be
the expression for the body of the loop. Expression Eb is
constructed using the technique described in Section IV. Then
the expression for the loop is:

El = (S A× Ec) A
M Eb

The presence of cyclic dependences in a loop make it
impossible to construct a set oriented algebraic expression
for the loop in its given form. However, cyclic dependences
are quite commonly encountered in loops in UDFs. We now
describe how to compute the expression Eb for the body
of a loop with cyclic data dependences, using user defined
aggregate functions.

Consider the subgraph of CFG corresponding to the body
of a loop. Let the logical nodes in this subgraph be L =
L1, . . . , Lk. Let Li be the first node in L that is part of a
cycle of data dependences. Then, the contribution of nodes
Li, . . . , Lk (referred to as Lc) can be captured as a user defined
aggregate function, if the following conditions hold:

1) The initial values of all variables written in Lc are
statically determinable. This is because initial values for

AM

AM

G

Π
retval

aux−agg(profit) as retval

AX

σ

partsupp

Π

(bind:partkey=pkey)

partkey, retval

suppkey=?

price, qty, disc

σ
partkey=pkey

lineitem

ΠAX

Ax
Π

price as @price,qty as @qty,disc as @disc

(S)
getCost(pkey) as cost

ΠS

(S)

Π
((@price−@disc)−(cost*@qty)) as profit

(S)

Fig. 8. Expression Tree for Example 5

these variables have to be supplied to aggregate functions,
at function creation time,

2) The query on which the cursor is defined does not have
an ORDER BY clause, or the database allows enforcement
of order while invoking user defined aggregates.

Let Ein be the expression at the point that precedes Li. Ein

is constructed as described earlier (the fetch next statement is
modeled as an assignment). Then the expression constructed
for the body of loop L is:

Eb = Gfc()(Ein)
where fc is the auxiliary function created for nodes Lc. fc is
a tuple-valued aggregate function with the signature:

TUPLE(c1, . . . , ck) fC(b1, . . . , bm)
where (i) c1, . . . , ck are the variables that are live at the end
of loop L, and (ii) b1, . . . , bm are the attributes that statements
in Lc use, but do not modify. The body of fc is constructed
using the statements in Lc, and fc is initialized with the set
of variables that are written to by statements in Lc. Nested
loops are not considered in the above description, but can be
handled similarly; we omit the details.

In the loop of Example 5, the cyclic dependence is present
in the following logical node:

if (profit < 0)
total loss = total loss - profit;

The expression is computed up to this logical node as described
earlier. The variable total loss is the only variable written to
in this node, and its initial value can be statically determined
to be 0. Therefore this logical node is expressed as a user
defined aggregate function that accepts profit as its parameter,
and returns total loss.

User defined aggregate functions should support a set
of methods that are invoked at different stages during their
evaluation [10]. In particular, they should support an initial-
ization method where initial values are set, an accumulate

Example 6 The definition of aux-agg() for Example 5

state: int total loss;

void initialize
begin

total loss = 0;
end

void accumulate (int profit)
begin

if (profit < 0)
total loss = total loss - profit;

end

int terminate
begin

return total loss;
end

Example 7 Table valued UDF with a cursor loop

create function some function() returns tt table(...) as
begin

declare c cursor for ...
open c;
fetch next from c into ...
while @@FETCH STATUS = 0

// compute attributes of table tt
insert into tt values(@v1, @v2, ...);
fetch next from c into ...

close c; deallocate c;
return tt;

end

or iterate method that accumulates individual input values,
and a terminate method that returns the aggregate value. For
Example 5, our technique results in a user defined aggregate
function aux-agg() shown in Example 6. Observe that the
accumulate method contains the same code as the logical node
with a dependence cycle.

The final expression constructed for the query in Example 5
is shown in Figure 8 where the function aux-agg() is the user
defined aggregate. Merging the expression tree with the outer
query block and removing correlations is done as described in
Section V and Section VI.

Note that in this approach, we conservatively move all the
statements in Lc into an aggregate function. In other words, all
the statements in the loop that follow Li (the first statement
that is a part of a dependence cycle) are considered for the
user defined aggregate. However, there could be statements in
Lc that are not part of any dependence cycle. In such cases, it
may be possible to reorder statements in the loop such that Lc

contains only statements that are part of a dependence cycle, or
statements dependent on them. This optimization is an ongoing
work, and details are beyond the scope of this paper.

B. Algebraizing table valued UDFs

Table valued UDFs that build and return a temporary
table are encountered very often in applications. Such UDFs
typically look like the one shown in Example 7. This UDF

creates a temporary table, iterates over a cursor and inserts
values into a temporary table in every iteration before returning

the table. Table valued UDFs can be represented algebraically
using our technique if (i) the loop does not contain cyclic data
dependences, (ii) there are no updates or deletes to the table
valued attribute (only inserts are present), and (iii) the table
valued attribute is not modified both before and after the loop.

The expression for the cursor loop is built as described
earlier. The statement that inserts values into the temporary
table is algebraized by using a projection on the attributes of
the temporary table. In the UDF of Example 7, let Ec be the
expression for the query on which the cursor is defined. Let
(a1, a2, . . .) be the attributes of the temporary table tt, and
let Eb be the expression for the code that computes the values
(@v1, @v2, . . .) that are inserted into tt. Then, the expression
for the UDF is:

(((S A× Ec) A
M Eb) A

× Πv1 as a1,v2 as a2,...(S))

C. Discussion

The ideas presented in this section can be used to build an
algebraic representation for scalar or table valued UDFs with
cursor loops. This covers a large class of UDFs commonly
encountered in practice. However, these ideas cannot handle
loops with a dynamic iteration space, such as arbitrary while
loops. Since queries involve disk IO, our main goal is to
decorrelate any queries inside loops. Techniques such as loop
fission [9], [11] can be extended to isolate query execution
statements into separate loops. The query execution statements
can then be decorrelated, while the rest of the loops could
remain as auxiliary UDFs, since they may have cyclic depen-
dences that may make it impossible to construct set-oriented
algebraic expressions. Handling loops with dynamic iteration
spaces is ongoing work.

VIII. RELATED WORK

Queries containing user-defined functions, such as the one
shown in Example 1, can be thought of as nested queries
with complex inner (sub-query) blocks. In the case of nested
queries, the inner block is simply another SQL query with
correlation variables used as its parameters. However, UDFs
typically use a mix of imperative language constructs and SQL,
and queries inside UDFs are embedded inside procedural code.
Over the last three decades, there has been a lot of work
on efficient evaluation of nested subqueries by decorrelating
them. However, query decorrelation techniques proposed till
date, such as [2], [12], [4], [5], [3], [6], cannot be used to
decorrelate queries present in UDFs. The techniques presented
in this paper enable decorrelation of UDF invocations.

Chaudhuri and Shim [13] consider optimization of queries
containing user-defined predicates. Their work addresses the
problem of choosing an optimal order for evaluating the
predicates and joins in the query. Lieuwen and DeWitt [14],
consider the problem of optimizing set iteration loops in
database programming languages. Guravannavar [15] consid-
ers the problem of rewriting queries inside program loops to
make use of parameter batching. Cheung et al.[16] address
the problem of automatically partitioning database application
code where part of the code runs inside the database as
stored procedure, with the goal of reducing latency. Similar
to these works, our approach makes use of information about
data dependencies and transformations such as loop fission

Fig. 9. Design of Query Rewrite Tool

and statement reordering originally proposed in the context of
parallelizing compilers [11], [17], to enable decorrelation of
queries inside UDFs.

IX. IMPLEMENTATION

Our techniques can be used with any database that supports
UDFs and standard decorrelation transformations. The exten-
sions and equivalence rules proposed by us can be integrated
with the query optimizer to enable decorrelation of UDF

invocations.

In order to measure the effectiveness of our techniques
and transformation rules, we have implemented them as a
query rewrite tool which can be used as a preprocessor for a
database system. The tool accepts a database schema, an SQL

query, and definitions of UDFs used by the query, written in the
syntax of a commercial database system (SYS1), as its inputs. It
produces as output a rewritten SQL query along with definitions
of auxiliary functions, if any, used by the rewritten query. The
rewritten SQL query is then executed on the database system,
which performs cost-based optimization on the query.

The structure of the rewrite tool is shown in Figure 9. After
parsing, a tree structured intermediate form of the query and
the referenced UDFs is constructed. If the UDF contains loops,
the loop fission module may be used to perform the necessary
transformations while the tree is built. This tree makes use
of Apply operators with extensions as described in this paper.
The aux function builder is invoked as required to generate
auxiliary functions. Transformation rules that remove the Apply
operators are then applied to the intermediate tree form. If
the tool is unable to remove all the Apply operators, it does
not transform the query. Finally, the output phase generates
a SQL query and auxiliary functions from the transformed
intermediate representation.

The implementation for handling loops in UDFs is in
progress. In particular, some databases (including SYS1) do
not allow user-defined aggregates to be written in procedural
SQL. Automating the creation of non-SQL functions from SQL

UDFs is a work in progress. Hence in the experiments which
deal with UDFs containing loops, we have manually performed
the transformations in accordance with our techniques.

X. EXPERIMENTAL RESULTS

We have designed and conducted experiments to assess (a)
the applicability of proposed rewrite techniques to real-world
UDFs, and (b) the performance benefits due to the rewrite
on modern commercial database systems. To the best of our

Example 8 UDF for Experiment 1

create function discount(float amt, int ckey) returns float as
begin

int custcat; float catdisct, totaldiscount;
select category into :custcat

from customer where customerkey = :ckey;
select frac discount into :catdisct

from categorydiscount where category = :custcat;
totaldiscount = catdisct * amt;
return totaldiscount;

end

Query: select orderkey, discount(totalprice, custkey) from order;

 0

 50

 100

 150

 200

 250

 300

10 50 100 500 1K 5K 10K 50K .1M .5M 1M 5M 10M

T
im

e
 (

in
 s

e
c
)

No. of UDF invocations

Database: SYS1

Original Query
Rewritten Query

Fig. 10. Results of Experiment 1

knowledge, there is no benchmark for SQL where queries make
extensive use of UDFs. To assess the applicability of our rewrite
techniques, we constructed and borrowed UDFs from real-
world applications. These UDFs make use of various constructs
offered by a typical imperative language. The program logic in
most of these UDFs is influenced by functions and procedures
found in real-world applications, and changes were made
primarily for running them against the TPC-H dataset.

We have performed our experiments on two widely used
commercial database systems - SYS1 and SYS2. Our tool was
used to generate the decorrelated queries for SYS1, and they
were manually translated to the syntax of SYS2 in order to
run the experiments. The database servers were run on Intel
Core i5 3.3 GHz machines with 4 GB of RAM. The queries
were run locally on the TPC-H 10 GB dataset with a few
augmented attributes to suit our examples. The tables customer
and orders had 1.5 million and 15 million records respectively,
with default indices on primary and foreign keys.

Experiment 1: As the first experiment, we consider a UDF

which computes the discount for a customer based on the
category of the customer. The UDF and the query are shown
in Example 8. The UDF has no branching or loops, and has a
sequence of straight line code. This UDF executes two scalar
SQL queries and an arithmetic operation in order to compute
the discount value. After applying our technique, we get the
following decorrelated form for the query of Example 8:

select o orderkey,(frac discount*o totalprice) as totaldiscount
from orders o, customer c, categorydiscount cd

 10

 100

 1000

 10000

10 50 100 500 1K 5K 10K 50K 100K500K 1M

T
im

e
 (

in
 s

e
c
);

 l
o

g
 s

c
a

le

No. of Customers (UDF invocations)

Database: SYS1

Original Query
Rewritten Query

Fig. 11. Results of Experiment 2

 0

 20

 40

 60

 80

 100

 120

 140

5 10 50 100 500 1000

T
im

e
 (

in
 s

e
c
)

No. of Categories (UDF invocations)

Database: SYS1

Original Query
Rewritten Query

Fig. 12. Results of Experiment 3

where o custkey=c custkey and c nationkey=custcategory

Figure 10 shows the results on SYS1 with the number of
UDF invocations on the x-axis and the time taken on the y-
axis. We vary the number of UDF invocations by using a top
clause. We can see that for smaller number of invocations,
both the original and the rewritten query perform similarly.
The optimizer performed an iterative invocation of the UDF

for the original query; it chose a plan with nested loop
joins for the rewritten query. However, as the number of
invocations increase, the time taken by the original query
steadily increases. This is because the optimizer does not have
alternative plans to choose, and uses the same iterative plan.

In contrast, the time taken by the rewritten query remains
very low even with a larger sizes as the optimizer chose other
plans with hash join. This shows how our transformations
enable the optimizer to choose better plans. Similar patterns
were observed on SYS2 though the actual numbers vary. For
instance, at 1 million invocations, the time taken by the original
query and the rewritten were respectively 6 minutes and 14
seconds. At 10 million invocations, the original query took 16
minutes where as the rewritten one ran in 2 minutes.

Experiment 2: We consider the query and UDF shown in
Example 1 of Section I, with its rewritten form in Example 2.
Recall that this UDF has assignment statements, branching
statements and a scalar SQL query.

We vary (by appending a where clause) the number of
customers, and hence the number of UDF invocations, and
report the time taken by the original and transformed queries.
The results on SYS1 are shown in Figure 11 with the UDF

invocation count on the x-axis and the time taken (in log scale)
on the y-axis.

The observations here are similar to what we observed in
Experiment 1. Observe that up to 1K invocations, both the
original and transformed queries perform similarly. For the
original query, the optimizer chose a plan which iteratively
invokes the UDF for each tuple in the customer table. In
the case of the transformed query, the optimizer chose a
nested loops join, thus resulting in similar performance. As the
number of customers increase, the original query plan remains
the same, and hence performance degrades.

For the rewritten query, the time taken actually reduces
between 1K and 10K before starting to raise very gradually
for invocations beyond 10K. This drop is due to the fact that
up to 1K, the chosen plan had two nested loop join operations.
Between 1K to 5K, one of them switches to a hash join;
between 5K to 10K, the second one also switches to a hash
join. At 10 million customers, the original query took more
than 3 hours where as the rewritten query ran in less than a
minute. Similar trends were recorded on SYS2 as well, where
the rewritten query took about 9 minutes while the original
query ran for almost 24 hours.

Experiment 3: We consider a UDF with a loop borrowed
from [15]. The UDF computes the number of parts in a given
category and all its parent categories. The parts table had 2
million rows and there were 1000 categories. Since our tool
currently does not handle UDFs with loops, we have manually
applied the transformation rules presented in this paper. Similar
to Experiment 2, we vary the number of UDF invocations by
appending a where clause on the categories table, and record
the time taken. The results of this experiment on SYS1 are
shown in Figure 12, where the x-axis indicates the number of
UDF invocations and y-axis shows the time taken.

Similar to earlier experiments, the time taken by the origi-
nal query increases as the number of invocations increases. We
observe that for smaller number of invocations, the transformed
query actually performs a bit worse than the original query. In
fact, as the graph shows, the time taken by the rewritten query
is a constant (at 5 seconds). This is due to the fact that the
scan on the parts table dominates the query execution time,
and the selection operation does not reduce this.

Our technique of decorrelating UDFs is designed to be part
of a cost based optimizer. If an optimizer incorporates these
techniques, it can choose the better of the two plans for smaller
number of invocations, since iterative invocation remains as
an alternative. Since our current implementation is an external
tool, this option is not available to the optimizer. At larger
number of invocations, however, the rewritten form turns out
to be significantly faster than the original query.

XI. CONCLUSION AND FUTURE WORK

While there are many reasons to use complex UDFs in
queries, they have not been widely used since query optimizers

tend to produce inefficient correlated execution plans for
queries with such UDFs. Our work is the first to show how to
decorrelate UDF invocation, and can be used as part of cost-
based optimization, or as a query rewrite technique. Our per-
formance results show up to orders of magnitude performance
improvement on two commercial database systems. Thus our
technique could play a key role in increasing the usage of
complex UDFs. More generally, our work is the first to provide
an algebraic representation for UDFs, which could have uses
beyond decorrelation in optimization of queries invoking UDFs.

As part of future work, we first plan to complete our imple-
mentation to handle UDFs with cursor loops. Our techniques
need to be extended to decorrelate UDFs with arbitrary while
loops. We also currently do not handle updates and deletes to
table valued attributes. We also plan to extend our techniques
to UDFs written in languages other than SQL. The current
work focusses on UDFs which are pure functions with no side
effects. Extending these ideas to optimize stored procedures is
another interesting area for future work.

Acknowledgements: We thank Amey Karkare for his com-
ments, and Subhro Bhattacharyya for help with experiments.

REFERENCES

[1] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
Latin: A Not-So-Foreign Language for Data Processing,” in ACM

SIGMOD, 2008.

[2] W. Kim, “On Optimizing an SQL-like Nested Query,” in ACM Trans.

on Database Systems, Vol 7, No.3, 1982.

[3] U. Dayal, “Of Nests and Trees: A Unified approach to Processing
Queries That Contain Nested Subqueries, Aggregates, and Quantifiers,”
in Intl. Conf. on Very Large Databases, 1987.

[4] P. Seshadri, H. Pirahesh, and T. C. Leung, “Complex Query Decorre-
lation,” in Intl. Conf. on Data Engineering, 1996.

[5] C. A. Galindo-Legaria and M. M. Joshi, “Orthogonal Optimization of
Subqueries and Aggregation,” in ACM SIGMOD, 2001.

[6] M. Elhemali, C. A. Galindo-Legaria, T. Grabs, and M. M. Joshi,
“Execution Strategies for SQL Subqueries,” in ACM SIGMOD, 2007.

[7] A. Silberschatz, H. Korth, and S. Sudarshan, Database System Concepts,

6
th Edition. McGraw Hill, 2010.

[8] S. S. Muchnick, Advanced Compiler Design and Implementation. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997.

[9] R. Guravannavar and S. Sudarshan, “Rewriting Procedures for Batched
Bindings,” in Intl. Conf. on Very Large Databases, 2008.

[10] S. Cohen, “User-defined aggregate functions: Bridging theory and
practice,” in ACM SIGMOD, 2006, pp. 49–60.

[11] K. Kennedy and K. S. McKinley, “Loop Distribution with Arbitrary
Control Flow,” in Proceedings of Supercomputing, 1990.

[12] R. A. Ganski and H. K. T. Wong, “Optimization of Nested SQL Queries
Revisited.” in ACM SIGMOD, 1987.

[13] S. Chaudhuri and K. Shim, “Optimization of Queries with User-defined
Predicates,” in Intl. Conf. on Very Large Databases, 1996.

[14] D. F. Lieuwen and D. J. DeWitt, “A Transformation Based Approach
to Optimizing Loops in Database Programming Languages,” in ACM

SIGMOD, 1992.

[15] R. Guravannavar, “Optimizing nested queries and procedures,” PhD
Thesis, Indian Institute of Technology, Bombay, Department of Com-
puter Sc. & Engg., 2009.

[16] A. Cheung, S. Madden, O. Arden, , and A. C. Myers, “Automatic
Partitioning of Database Applications,” in Intl. Conf. on Very Large

Databases, 2012.

[17] L. Rauchwerger and D. Padua, “Parallelizing While Loops for Multipro-
cessor Systems,” in Proc. of the 9th International Parallel Processing

Symposium, 1995.

