1,124 research outputs found

    Collective Effects of Fire Intensity and Sloped Terrain on Wind-Driven Surface Fire and Its Impact on a Cubic Structure

    Full text link
    The combined effects of percent slope and fire intensity of a wind driven line fire on an idealized building has been numerically investigated in this paper. The simulations were done using the large eddy simulation (LES) solver of an open source CFD toolbox called FireFOAM. A set of three fire intensity values representing different heat release rates of grassland fuels on different inclined fuel beds have been modeled to analyze the impact of factors, such as fuel and topography on wind-fire interaction of a built area. An idealized cubic structure representing a simplified building was considered downstream of the fire source. The numerical results have been verified with the aerodynamic measurements of a full-scale building model in the absence of fire effects. There is a fair consistency between the modeled findings and empirical outcomes with maximum error of 18%, which acknowledge the validity and precision of the proposed model. The results show that concurrent increase of fire intensity and terrain slope causes an expansion of the surface temperature of the building which is partially due to the increase of flame tilt angle upslope on the hilly terrains. In addition, increasing fire intensity leads to an increase in the flow velocity, which is associated with the low-pressure area observed behind the fire front. Despite limitations of the experimental results in the area of wind-fire interaction the result of the present work is an attempt to shed light on this very important problem of fire behavior prediction. This article is a primary report on this subject in CFD modeling of the collective effects of fire intensity and sloped terrain on wind driven wildfire and its interaction on buildings

    Decarbonizing the cold chain: Long-haul refrigerated deliveries with on-board photovoltaic energy integration

    Get PDF
    Decarbonizing the cold chain is a priority for sustainability due to the increasing demand for chilled/frozen food and pharmaceutics. Refrigerated transport requires additional fuel for refrigeration other than for traction. Photovoltaic panels on the vehicle rooftop, a battery bank, and a power conversion system can replace the diesel engine driving the transport refrigerated unit. In long-haul deliveries, vehicles cross zones with different climate conditions, which affect both refrigeration requirements and photovoltaic energy conversion. Mandatory driver\u2019s breaks and rest also affect delivery timing and energy consumption. A multiperiod, multizone optimization model is developed to size the onboard photovoltaic system, based on features of the delivery tour. The model is applied to a palletized chilled food delivery from North-Eastern Italy, showing a payback time of around four years, which can drop under two years for expected reduction of component costs. Economic and environmental performances can be increased by also allowing refrigerated products on-board during the return journey, leading to more fuel savings. Photovoltaic-integrated long-haul delivery for frozen products is not convenient at current market costs. Different climate conditions are tested, showing the model ability to act as a decision support tool to foster renewable energy penetration into the cold chain

    Waste-to-energy application in an industrial district

    Get PDF
    Industrial districts present some features that can be recognized and exploited in the plant engineering through the proposal of solutions which are not simple applications of models created for individual companies. This work illustrates a waste-to-energy plant to be used for the industrial waste of the district of Friuli Venezia Giulia. The project from the union between university and local entrepreneurs. It is described how the expense for woodworking-waste disposal can turn from a charge into an advantage for the firms of the district thanks to the incineration of this waste in a plant unique for the typology of waste treated. Each plant section is described in detail, underlining innovative approaches and solutions

    Exploratory pilot study exploring clinical effects of exogenous sustained-release Melatonin on nocturia in Parkinson’s Disease

    Get PDF
    Introduction: Nocturia is one of the commonest non‐motor symptoms in Parkinson’s disease (PD). Nocturia has evolved from being understood as a symptom of urological disorders or neurogenic bladder dysfunction to being considered as a form of circadian dysregulation. Exogenous melatonin is known to help circadian function and can be an effective strategy for nocturia in PD. Methods: In this open label single‐site exploratory phase 2 pilot study, adults with PD and nocturia underwent assessments using standardised questionnaires, urodynamics studies and a bladder scan. This was followed by completion of a frequency volume charts (FVC) and two weeks sleep diary. Sustained‐release melatonin 2mg was then administered once nightly for six weeks. A repeat assessment using questionnaires, the FVC and sleep diary was performed whilst on treatment with melatonin. Companion or bed partners filled in sleep questionnaires to assess their sleep during the intervention. Results: 20 patients (12 males; mean 68.2 (SD=7.8) years; mean PD duration 8.0 (±5.5) years with PD reporting nocturia were included. Administration of melatonin was associated with a significant reduction in the primary outcome bother related to nocturia measured using the International Consultation on Incontinence Questionnaire Nocturia (ICIQ‐N) (p=0.01), number of episodes of nocturia per night (p=0.013) and average urine volume voided at night (p=0.013). No serious adverse events were reported. No significant improvement was noted in bed‐partner sleep scores. Conclusion: In this preliminary open‐label study, administration of sustained‐release melatonin 2mg was found to be safe for clinical use and was associated with significant improvements in night‐time frequency and nocturnal voided volumes in PD patients

    Indirect Optimization of Satellite Deployment into a Highly Elliptic Orbit

    Get PDF
    The analysis of the optimal strategies for the deployment of a spacecraft into a highly elliptic orbit is carried out by means of an indirect optimization procedure, which is based on the theory of optimal control. The orbit peculiarities require that several perturbations are taken into account: an 8x8 model of the Earth's potential is adopted and gravitational perturbations from Moon and Sun together with solar radiation pressure are considered. A procedure to guarantee convergence and define the optimal switching structure is outlined. Results concerning mission with up to 4.5 revolutions around the Earth are given and significant features of this kind of deployment are highlighte

    A graphical approach to relational reasoning

    Get PDF
    Relational reasoning is concerned with relations over an unspecified domain of discourse. Two limitations to which it is customarily subject are: only dyadic relations are taken into account; all formulas are equations, having the same expressive power as first-order sentences in three variables. The relational formalism inherits from the Peirce-Schröder tradition, through contributions of Tarski and many others. Algebraic manipulation of relational expressions (equations in particular) is much less natural than developing inferences in first-order logic; it may in fact appear to be overly machine-oriented for direct hand-based exploitation. The situation radically changes when one resorts to a convenient representation of relations based on labeled graphs. The paper provides details of this representation, which abstracts w.r.t. inessential features of expressions. Formal techniques illustrating three uses of the graph representation of relations are discussed: one technique deals with translating first-order specifications into the calculus of relations; another one, with inferring equalities within this calculus with the aid of convenient diagram-rewriting rules; a third one with checking, in the specialized framework of set theory, the definability of particular set operations. Examples of use of these techniques are produced; moreover, a promising approach to mechanization of graphical relational reasoning is outlined

    Probing bulk viscosity in relativistic flows

    Full text link
    We derive an analytical connection between kinetic relaxation rate and bulk viscosity of a relativistic fluid in d spatial dimensions, all the way from the ultra-relativistic down to the near non-relativistic regime. Our derivation is based on both Chapman-Enskog asymptotic expansion and Grad's method of moments. We validate our theoretical results against a benchmark flow, providing further evidence of the correctness of the Chapman-Enskog approach; we define the range of validity of this approach and provide evidence of mounting departures at increasing Knudsen number. Finally, we present numerical simulations of transport processes in quark gluon plasmas, with special focus on the effects of bulk viscosity which might prove amenable to future experimental verification

    Relativistic dissipation obeys Chapman-Enskog asymptotics: analytical and numerical evidence as a basis for accurate kinetic simulations

    Get PDF
    We present an analytical derivation of the transport coefficients of a relativistic gas in (2+1) dimensions for both Chapman-Enskog (CE) asymptotics and Grad's expansion methods. Moreover, we develop a systematic calibration method, connecting the relaxation time of relativistic kinetic theory to the transport parameters of the associated dissipative hydrodynamic equations. Comparison between the analytical results and numerical simulations, shows that the CE method correctly captures dissipative effects, while Grad's method does not. The resulting calibration procedure based on the CE method opens the way to the quantitative kinetic description of dissipative relativistic fluid dynamics under fairly general conditions, namely flows with strongly non-linearities, in non-ideal geometries, across both ultra-relativistic and near-non-relativistic regimes

    An analytical model based on radiative heating for the determination of safety distances for wildland fires

    Get PDF
    International audienceThe radiative heat transfer is often the main thermal impact of a wildfire on people fighting the fire or on structures. Thus, the estimation of the radiation coming from the fire font and hitting a target is of primary importance for forest and urban managers. A new flame model based on the solid flame assumption is developed by considering a finite fire front width. The realistic description of finite fire front widths allows proposing a new criterion for the estimation of the radiative impact of the fire, which is based on the ratio fire front width/ flame length, opposed to the classical approach of considering only the flame length. The new model needs to be solved numerically so an analytical approximation is proposed to obtain a simple and useful formulation of the acceptable safety distance. A sensivity analysis is conducted on the different physical and geometrical parameters used to define the flame front. This analysis shows that the flame temperature is the most sensitive parameter. The results of the analytical model are compared with the numerical solution of the flame model and previous approaches based only on flame length. The results show that the analytical model is a good approximation of the numerical approach and displays realistic estimations of the acceptable safety distance for different fire front characteristics
    • 

    corecore