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The analysis of the optimal strategies for the deployment of a spacecraft into a highly elliptic orbit is carried out by means of
an indirect optimization procedure, which is based on the theory of optimal control. The orbit peculiarities require that several
perturbations are taken into account: an 8× 8 model of the Earth potential is adopted and gravitational perturbations from Moon
and Sun together with solar radiation pressure are considered. A procedure to guarantee convergence and define the optimal
switching structure is outlined. Results concerning missions with up to 4.5 revolutions around the Earth are given, and significant
features of this kind of deployment are highlighted.

1. Introduction

Space trajectory optimization has gained importance thanks
to the development of digital computers and the demanding
features of space missions that are currently envisaged. Pay-
load maximization is fundamental to ensure mission feasibil-
ity and to reduce costs; sometimes, flight-time minimization
is sought to comply with operational requirements. Numer-
ical methods for trajectory optimization can be in general
classified into three main groups: indirect methods, direct
methods, and evolutionary algorithms. The last group is
receiving a great attention, as these algorithms are intrinsical-
ly apt to multidisciplinary and multiobjective optimization
and in principle are capable of achieving the global optimum
in a very large search space. When low-thrust trajectories
are considered, evolutionary algorithms typically rely on
approximations to maintain the computational time at rea-
sonable values, as a large number of evaluations are required
to achieve the solution; for these reasons, they usually
provide only an estimate of the optimal solution and a refine-
ment is required to obtain the optimum; direct methods
are often used for this purpose. As a consequence, low-thrust
trajectories are often dealt with by either direct or indirect

methods that typically perform single-objective optimiza-
tion, attaining a local optimum close to a tentative solution;
additional effort is necessary to assure the achievement of the
global optimum.

An accurate comparison of direct and indirect methods
is found in Betts [1]. A wide number of similarities between
the methods is highlighted. Direct methods introduce a
parametric representation of the control and/or state vari-
ables; the large number of variables, which are required to
accurately describe the problem, usually leads to long com-
putational times that can be reduced by taking the matrix
sparsity into account. Indirect methods are fast due to the
reduced number of variables and may offer higher accuracy
and interesting theoretical insight into the problem charac-
teristics. However, three main drawbacks of indirect tech-
niques need to be underlined [1]: analytic expressions for the
optimum necessary conditions must be derived, the region of
convergence for a root-finding algorithm may be small, and,
for problems with path inequalities, it is necessary to guess
the sequence of constrained and unconstrained subarcs. It
is, however, important to note that also direct methods rely
on a tentative solution and may not converge to the optimal
solution. However convergence difficulties prevent indirect
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methods from finding a solution, whereas direct methods
find at least a suboptimal solution.

The authors have been using an indirect method for
many years and have developed a procedure that mitigates
the drawbacks of this approach; in particular the formulation
of the optimization problem is made quite simple and atten-
tion can be paid to strategies to achieve convergence. In the
past two decades the procedure has been tested on different
and often difficult problems of spaceflight mechanics and
very accurate results have been obtained [2–8]. Recently, the
authors had to employ their procedure in a complex appli-
cation concerning the finite-thrust deployment of a satel-
lite into a highly elliptic orbit (HEO). Dynamical model
and problem data were assigned; numerical results were
requested for the sake of comparison. HEOs are gaining
interest in the scientific community because they represent
a less expensive alternative to halo orbits around the Earth-
Moon Lagrangian points; in fact, they combine great semi-
major axis with large eccentricity, thus providing long stays
far from the Earth disturbances at the apogee, where space-
craft velocity is very low. For these reasons they are envisaged
as proper operational orbits of spacecraft devoted to deep-
space observation. An example is the now-canceled Simbol-
X mission [9], which was designed to employ a two-space-
craft formation flying on a HEO to create a new-generation
X-ray telescope.

HEOs present low perigee and high apogee; thus, per-
turbations due to the Earth asphericity and gravitational
attraction of Sun and Moon are important and cannot be
neglected. In the literature great attention is paid to the
behavior of a satellite in such perturbed environment in
order to find fuel-saving station-keeping strategies and
improve lifetime. Less attention has been paid to the opti-
mization of the deployment maneuver. Typically, these com-
plex problems are faced using direct methods [10, 11]; indi-
rect optimization methods have been widely applied to inter-
planetary trajectories (due to the simple dynamics), whereas
their application to geocentric problems (involving pertur-
bations) is less frequent. In these cases the attention is often
focused on continuous-thrust solutions [12–14], and mini-
mum-time transfers are generally sought; minimum-fuel
missions with coast arcs would be too long when a high-Isp

very-low-thrust engine is employed. A very-low-thrust mul-
tirevolution transfer was analyzed [15] using averaging tech-
niques to deal with perturbations and a continuation scheme
to achieve the optimal solution.

Spacecrafts often use chemical engines for orbit deploy-
ment. In these cases the thrust level is not low enough for
a convenient continuous-thrust transfer and coast arcs are
necessary to maintain the fuel consumption within accept-
able levels. Several authors [16–18] have dealt with this kind
of bang-bang problems but perturbations are usually neg-
lected. In a recent article [19], Thevene and Epenoy include
J2 perturbations, whose effects are exploited to reduce the
propellant consumption in reconfiguring a four-spacecraft
formation; Chuang et al. [20] discuss the effects of atmo-
spheric drag and Earth oblateness for a fixed-duration
transfer.

Table 1: Initial and final orbit characteristics.

a, km e i, deg Ω, deg ω, deg ν

Initial 98922 0.931985 5.2 90.0 270.0 0.0

Final 106247 0.798788 — — — 180.0

In the present paper the multirevolution finite-thrust
deployment of a satellite into an assigned HEO is optimized,
taking the relevant perturbations into account. The dynami-
cal model considers an 8× 8 model of the Earth gravitational
potential, solar radiation pressure, and gravitational pertur-
bations from Moon and Sun, whose positions are obtained
via ephemerides. The maneuver is essentially a perigee rais-
ing and atmospheric drag, which is negligible, can be omit-
ted; however the procedure described here could include
aerodynamic forces [4, 21]. The perigee radius exhibits sig-
nificant variations, even during a ballistic orbit, due to the
influence of Sun and (mostly) Moon; these variations are
sensitive to the position of the perturbing bodies, thus
depending on the departure date. During each apogee pas-
sage, the engine and the luni-solar gravitation modify the
perigee height; the orbital period is also changed, and this
has influence on the position of the perturbing bodies at the
following apogees. The effect on the burn structure (i.e., the
order of the perigee and apogee burns), which minimizes the
fuel consumption, is hard to predict.

The analytic formulation of the indirect optimization
problem is quite simple, and the necessary conditions for
optimality are derived with little effort. Numerical conver-
gence to the optimal solution is instead difficult to achieve
and the dependence of the burn structure on the departure
date makes the use of continuation techniques on the depar-
ture date unfeasible. The present paper introduces a proper
stepped procedure to find out the optimal burn structure
for any assigned departure date; numerical examples are pre-
sented. A fast convergence to the optimal solution is obtained
for a wide range of departure dates; the switching structure
of the optimal trajectory highlights how perturbations influ-
ence the deployment and how their effects can be exploited
to save propellant. Results prove that an indirect method
can be effective in analyzing this kind of maneuvers; an
accurate problem formulation and a suitable solution proce-
dure help to mitigate the drawbacks of the indirect approach.

2. Dynamic Problem

The paper considers the transfer of a satellite from an elliptic
parking orbit with low perigee to the final operational HEO.
Reference is made to the now-canceled Simbol-X mission;
the characteristics of the initial and final osculating orbits
are given in Table 1. The mission starts at the perigee of the
initial orbit, where the launcher has released the spacecraft,
and ends when the apogee of the final orbit is reached. Initial
position, velocity, and mass are known. Only semimajor axis
a, eccentricity e, and true anomaly ν are assigned at the final
point; no constraints are imposed on the value of the other
orbital parameters (deployment to an assigned final orbit was
dealt with in [22]). The initial mass is 960 kg, and the final
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mass is maximized. For operational reasons, thrust cannot
be used during the first revolution (orbit acquisition) and in
the proximity of the last apogee passage (start of operations).

The spacecraft is modeled as a point with variable mass.
Position r, velocity v, and mass m of the spacecraft are the
problem state variables, described by differential equations

dr
dt
= v,

dv
dt
= −μr

r3
+

T
m

+ ap,

dm
dt

= −T

c
.

(1)

The trajectory is controlled by the thrust vector T (the effec-
tive exhaust velocity c is assumed constant). The perturbing
acceleration

ap = aJ + alsg + asrp (2)

is composed of the perturbations due to the Earth asphericity
aJ , luni-solar gravity alsg, and solar radiation pressure asrp.

The Earth Mean Equator and Equinox of Epoch J2000
reference frame (i.e., EME2000) is adopted; I, J, and K are
unit vectors along the axes of EME2000. Precession and
nutation are neglected. Position is described by radius r, right
ascension ϑ, declination ϕ as

r = r cos ϑ cosϕ I + r sin ϑ cosϕ J + r sinϕ K. (3)

The topocentric reference frame, identified by unit vec-
tors ι (radial), j (eastward), and k (northward), is intro-
duced. One has

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ι

j

k

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎣

cos ϑ cosϕ sin ϑ cosϕ sinϕ

− sin ϑ cos ϑ 0

− cos ϑ sinϕ − sin ϑ sinϕ cosϕ

⎤

⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I

J

K

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (4)

The position vector in the topocentric frame is r = rι, and
the velocity vector is expressed as

v = ṙ = uι + vj + wk (5)

with u, v, and w being radial, eastward, and northward com-
ponents, respectively. The scalar state equations are easily
derived:

dr
dt
= u,

dϑ
dt
= v
(
r cosϕ

) ,

dϕ
dt
= w

r
,

du
dt
= − μ

r2
+

(
v2 + w2

)

r
+
Tu

m
+
(

ap
)

u
,

dv
dt
=
(−uv + vw tanϕ

)

r
+
Tv

m
+
(

ap
)

v
,

dw
dt
=
(−uw − v2 tanϕ

)

r
+
Tw

m
+
(

ap
)

w
,

dm
dt

= −T

c
,

(6)

where subscripts u, v, and w denote the components along
ι, j, and k, respectively. It is important to note that the state
equations are relatively simple with this set of variables in
comparison, for instance, to the use of equinoctial elements.
This fact facilitates the analytical derivation of the necessary
condition for optimality.

2.1. Earth Potential Model. The Earth potential description
is based on the Earth Gravitational Model EGM2008, which
provides normalized spherical harmonic coefficients for the
Earth gravitational potential; the “Tide Free” system is used
[23]. The developed code can be quickly modified to consider
higher-degree terms or the “Zero Tide” system. The Earth’s
rotation is assumed to be uniform, neglecting precession and
nutation. The EME2000 reference frame is adopted. The
gravity model is described in detail in [24].

According to EGM2008, the potential corresponding to
the Earth asphericity is expressed as

Φ = −μ

r

N∑

n=2

(
rE
r

)n n∑

m=0

(Cnm cosmλ + Snm sinmλ)Pnm
(
sinϕ

)
,

(7)

where μ is the Earth gravitational parameter and rE is the
semimajor axis of the Earth ellipsoid. In this paper N is cho-
sen equal to 8. The associated Legendre functions Pnm(sinϕ)
and the spherical harmonic coefficients Cnm and Snm are used
in the unnormalized form that permits faster computations.
Normalized quantities would allow for a greater accuracy,
which is not necessary for the present application.

The terrestrial latitude coincides with declination ϕ, as
nutation is neglected. The terrestrial longitude λ is obtained
as λ = ϑ−ϑGref−ωE(t−tref), where ϑGref is the Greenwich right
ascension at the reference time tref (51544.5 MJD) and ωE is
evaluated on the basis of the sidereal day, neglecting preces-
sion.

The perturbing acceleration due to the Earth asphericity
is the gradient of −Φ, and its components in the topocentric
frame are thus evaluated as

(
aJ
)

u = −
∂Φ

∂r
,

(
aJ
)

v = −
(∂Φ/∂ϑ)
(
r cosϕ

) ,

(
aJ
)

w = −
(
∂Φ/∂ϕ

)

r
.

(8)
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Differentiation with respect to r and ϑ is straightforward;
derivatives with respect to ϕ require the derivatives of the
associated Legendre functions, which are obtained recur-
sively, exploiting the properties of the Legendre polynomials.
Derivatives are evaluated directly with respect to ϕ (some
authors use the colatitude π/2− ϕ, the only difference being
a sign change of the derivatives); one has, posing Pnm = 0 for
m > n,

dPnm
dϕ

=

⎧
⎪⎪⎨

⎪⎪⎩

Pn1 for m = 0,
[
Pn(m+1) − (n + m)(n−m + 1)Pn(m−1)

]

2
for m > 0.

(9)

Further details can be found in [25–27].

2.2. LuniSolar Perturbation. Moon and Sun positions are
evaluated using DE405 JPL ephemeris [28], which directly
provide the body position in rectangular coordinates xb, yb,
and zb (with either subscript b = s for Sun or b = l for
Moon) with respect to the Earth in the International Celestial
Reference Frame and therefore in the EME2000 frame (dif-
ferences between these frames are very small and can be
neglected in the present problem). The perturbing accel-
eration on the spacecraft, which is caused by a body with
gravitational parameter μb and position vector with respect
to the Earth rb = xbI + ybJ + zbK, is given by the difference
of the gravitational accelerations that the perturbing body
causes on spacecraft and Earth, that is,

abg = −
(
μb
R3

)

R−
(
μb
r3
b

)

(rb), (10)

where R = r−rb is the spacecraft relative position vector with
respect to the perturbing body (and −rb is the Earth relative
position), as shown in Figure 1.

The acceleration is projected onto the topocentric frame
(based on the spacecraft position) to easily obtain

(

abg
)

u
=
(
μb
R3

)

[(rb)u − r]−
(
μb
r3
b

)

(rb)u,

(

abg
)

v
=
(
μb
R3

)

(rb)v −
(
μb
r3
b

)

(rb)v,

(

abg
)

w
=
(
μb
R3

)

(rb)w −
(
μb
r3
b

)

(rb)w

(11)

with R =
√

[r − (rb)u]2 + (rb)2
v + (rb)2

w. The position compo-
nents of the perturbing body in the spacecraft topocentric
frame are

(rb)u = xb cos ϑ cosϕ + yb sin ϑ cosϕ + zb sinϕ,

(rb)v = −xb sin ϑ + yb cos ϑ,

(rb)w = −xb cos ϑ sinϕ− yb sin ϑ sinϕ + zb cosϕ.

(12)

Perturbing bodyy

Spacecraft

r

Earth

rb

x

R

ϑb

Figure 1: Schematic geometry of gravitational perturbations.

The perturbing acceleration is thus written as a function of
time and state variables (viz., only r, ϑ, and ϕ, as gravity
forces only depend on position). The lunisolar perturbation
is the sum of the gravitational perturbations due to Moon
(b = l) and Sun (b = l).

2.3. Solar Radiation Pressure. The photon pressure at dis-
tance R from the Sun is p = LS/4πR2clight, where LS is the
total power radiated by the Sun and clight is the speed of
light; the photon pressure at R∗ = 1 AU is p∗ = 4.55682 ·
10−6 N/m2. Assuming reflectivity η = 0.7 the acceleration
on a spherical body of mass m and cross-section S is

asrp =
(
1 + η

)
p∗
(
R∗

R

)2( S

m

)
R
R
= ΓR

mR3
, (13)

whose components are

(

asrp

)

u
=
[

Γ

(mR3)

]

[(rs)u − r],

(

asrp

)

v
=
[

Γ

(mR3)

]

[(rs)v],

(

asrp

)

w
=
[

Γ

(mR3)

]

[(rs)w].

(14)

The effect of solar radiation pressure is therefore an acceler-
ation in the Sun-spacecraft direction, inversely proportional
to the squared distance of the two bodies. This acceleration
and the solar gravity acceleration show the same dependence
on distance and are parallel but with opposite directions; the
similarity with the first term on the right-hand side of (11)
allows one to treat them simultaneously. One should note
that the perturbing acceleration in (13) depends also on the
instantaneous mass; this fact introduces an additional term
in the time derivative of the mass adjoint variable.

A conical shadow of the Earth is considered to determine
the eclipses when (rs)u < 0 (Sun and spacecraft on opposite
sides with respect to the Earth). The relevant quantities are
sketched (not to scale) in Figure 2. The Earth determines a
shadow cone with semiangle γshadow = sin−1(rE/rs), where rE
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Sun

γshadowγ

R
δ

rs

rEr

Earth
Spacecraft

Figure 2: Schematic geometry of the Earth shadow.

is the Earth radius. The spacecraft is instead on the surface
of a cone (centered at the Sun with axis on the Earth-Sun
connecting line) with semi-angle γ = sin−1(r sin δ/R), where
the angle δ between the Earth centered vectors pointing to
the Sun and spacecraft is evaluated as δ = cos−1[(rs)u/rs].
The spacecraft is in the Earth shadow when (rs)u < 0 and
γ < γshadow. Results show that, in the present case (m =
960 kg, S = 5.7 m2), solar radiation pressure has a negligible
influence on performance, causing variations of the final
mass of a few grams.

3. Indirect Optimization Method and
Optimal Controls

Optimal control theory (OCT) [29] is applied to the problem
described above to determine the optimal solution. The
state variables are collected in vector x = (r ϑ ϕ u v w m)T .
Adjoint variables λ = (λr λϑ λϕ λu λv λw λm)T are intro-
duced, and the Hamiltonian is defined as

H = λTx = H′ + ΛTT− λm

(
T

c

)

, (15)

whereH′ collects all the terms that do not contain the control
(i.e., T in the present problem), and

Λ = λuι + λvj + λwk (16)

is the adjoint vector to the velocity, which is named primer
vector in the literature [30].

OCT provides the Euler-Lagrange equations for the
adjoint variables

dλT

dt
= −∂H

∂x
. (17)

The perturbing terms depend on the state variables and
therefore influence the derivatives of the adjoint variables.
As far as the geopotential is concerned, differentiation with
respect to r and ϑ is again straightforward. The recursive
scheme, which is outlined in Section 2.1, is again used to
evaluate the derivatives with respect to declination ϕ. Explicit

expressions are derived for the gravitational perturbations
of Moon and Sun (which depend on r, ϑ and ϕ) and solar
radiation pressure (which also depends on m). The equations
of the derivatives, which are tedious but simple to obtain, are
omitted for the sake of conciseness.

Pontryagin’s maximum principle (PMP), which states
that the optimal control must maximize the Hamiltonian,
is used to determine the optimal controls (thrust magnitude
and direction). The thrust T must be parallel to the primer
vector and the Hamiltonian, which is rewritten as

H = H′ + T
(
Λ

m
− λm

c

)

, (18)

is linear with respect to T ; a bang-bang control arises and
the thrust magnitude must be either maximum or minimum
(i.e., zero) depending on the sign of the switching function
SF = Λ/m− λm/c (Λ indicates the primer vector magnitude)

T =
⎧
⎨

⎩

Tmax for SF > 0,

0 for SF < 0.
(19)

When indirect procedures are used, the thrust level is
usually decided during integration on the basis of the sign
of the switching function. It is instead convenient to split the
trajectory into f arcs that are joined at the switch points, that
is, where the control (here the thrust magnitude) is discon-
tinuous; in other problems a similar split is enforced where
state variables are discontinuous and/or their values are sub-
ject to constraints. The time lengths of these arcs become f
additional unknown parameters of the present problem. This
scheme avoids integration instabilities, assures high accuracy,
and improves the convergence of the numerical procedure.
The switching structure (i.e., number and order of thrust and
coast arcs) is specified a priori; after the achievement of the
numerical solution, the switching function history is checked
and the switching structure is modified if PMP is violated
(except at departure and arrival where, according to mission
constraints, the engine cannot be used even though it would
be beneficial).

OCT also provides the boundary conditions for optimal-
ity [3], which depend on performance index and boundary
conditions on the state variables. Mayer formulation is
adopted, and the performance index is written as

φ
(

x( j−1)+
, x j− , t( j−1)+

, t j−
)

j = 1, . . . , f (20)

with subscripts j− and j+ indicating the values just before
and after point j. Boundary conditions on the state variables
are collected in the form

ψ
(

x( j−1)+
, x j− , t( j−1)+

, t j−
)

= 0, j = 1, . . . , f . (21)

Optimality requires

− λTj− +
∂φ

∂x j−
+ μT

[
∂ψ

∂x j−

]

= 0, j = 1, . . . , f , (22)

λTj+ +
∂φ

∂x j+
+ μT

[
∂ψ

∂x j+

]

= 0, j = 0, . . . , f − 1, (23)
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Hj− +
∂φ

∂tj−
+ μT

∂ψ

∂tj−
= 0, j = 1, . . . , f , (24)

−Hj+ +
∂φ

∂tj+
+ μT

∂ψ

∂tj+
= 0, j = 0, . . . , f − 1. (25)

The constant Lagrange multipliers μ are eliminated from
(22)–(25); the resulting boundary conditions for optimality
and the boundary conditions on the state variables, given by
(21), are collected in a single vector in the form

σ
(

x( j−1)+
, x j− , λ( j−1)+

, λ j− , t( j−1)+
, t j−

)

= 0, j = 1, . . . , f ,

(26)

which, together with state and adjoint differential equations,
defines a multipoint boundary value problem (MPBVP).

In the present problem, at the initial point ( j = 0), t0 and
all state variables are assigned; at the final point ( j = f ) the
apogee radius rA and orbit semilatus rectum p are given, and

r f − rA = 0,

u f = 0 ,

v2
f + w2

f −
μp

r2
A

= 0

(27)

are the conditions imposed on the state variables. The per-
formance index to be maximized is the final mass, that is,
φ = mf . The boundary conditions for optimality provide

λϑ f = 0, (28)

λϕ f = 0, (29)

λv f w f − λw f v f = 0, (30)

λm f = 1. (31)

The final time is free and (24) with j = f provides the trans-
versality condition

Hf = 0. (32)

Application of (24) and (25) at every switch point pre-
scribes the Hamiltonian continuity; state and adjoint vari-
ables are continuous and, as a consequence, the switching
function must be null at the switch points

SF j = 0 j = 1, . . . , f − 1. (33)

The numerical problem consists of 14 differential equa-
tions represented by (6) and (17). Initial values of the seven
adjoint variables and time lengths of f coast and burn arcs
are unknown in the present problem; an equal number
of boundary conditions, given by (27)–(33), completes the
MPBVP. The problem is homogeneous in the adjoint var-
iables, and (31) can be replaced by assigning the initial value
λm0 = 1 in order to reduce the number of unknowns. The
unknown parameters are collected in a vector p.

4. Numerical Solution

The solution of the problem outlined in the previous section
is a difficult task; many aspects of the relevant numerical
procedure deserve attention. Variables are normalized using
the Earth equatorial radius, the corresponding circular veloc-
ity, and the spacecraft initial mass as reference values. Dif-
ferential equations are integrated by using a variable-order
variable-step integration scheme, based on the Adams-Moul-
ton formulas, in order to carry out a fast and very accurate
integration.

A single-shooting technique is adopted to solve the
MPBVP, which is transformed into a series of initial value
problems (IVPs) leading to convergence by means of New-
ton’s method [31], according to the following shooting
algorithm: at the rth iteration (1) using the current tentative
values pr for the unknown parameters, the related IVP is
solved numerically; (2) the errors σ on the boundary con-
ditions are evaluated; (3) the new tentative values pr+1 are
evaluated according to Newton’s rule

pr+1 = pr −
(
∂σ

∂p

)−1

σ . (34)

This process is repeated until all errors are smaller than an
assigned value (here set equal to 10−7).

At any step, the sensitivity matrix ∂σ/∂p is numerically
evaluated by means of a first-order forward finite-difference
scheme. Each unknown parameter is in turn perturbed by a
small amount δpi; the new IVP is solved, and the change of
the errors on the boundary conditions δσ is evaluated. The
choice of the perturbation step δpi is important to achieve a
proper evaluation of the sensitivity matrix. A rule of thumb
suggests δpi of the same order of the square root of the
absolute tolerance used by the integrator (δpi = 5 · 10−6 in
this application).

The initial guess p1 is very important for the convergence
of the numerical procedure. The time at the switch points
(i.e., where the engine is turned on or off) may exhibit signi-
ficant changes (the orbital period is modified by the maneu-
vers that are performed). The corresponding right ascension
instead can be easily guessed as thrust arcs are in correspon-
dence of the orbit apsides, either perigee or apogee, and ϑ
is preferred as the independent variable in place of time t.
Moreover, ϑ is replaced by a nondimensional variable ε in
order to “fix” the integration intervals; inside each arc

ε = j − 1 +
ϑ− ϑj−1

ϑj − ϑj−1
, (35)

ε is zero at the initial point, assumes consecutive integer
values at the switch points, and is equal to the total number
of arcs f at the final point. The f right-ascension values ϑj at
the switch points and at the final point are the problem addi-
tional unknowns that replace the corresponding unknown
times (ϑ0 = 1.5π is an assigned initial condition).

The features of the present indirect approach, in particu-
lar, the peculiar treatment of the switch conditions, widen the
convergence radius of the numerical procedure. On the other
hand, the MPBVP solution is correct only if the tentative
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switching structure corresponds to that of the optimal solu-
tion. If the tentative solution lacks a burn arc, a suboptimal
solution is usually found, with the switching function greater
than zero during a coast arc. The request of adding a
further thrust arc is clear, but, unfortunately, this sometimes
implies the ensuing removal of another propelled arc. If the
tentative structure presents one more burn than the optimal
solution, (33) cannot be fulfilled at the two extremities of the
superfluous arc, and the code would provide an unfeasible
solution (e.g., a burn arc with negative length) or the MPBVP
solution process would not converge at all. The suggestion
that an arc should be removed is clear, but no replacement
arc is necessary, and this case is easier to manage.

An experienced user is able to guess the unknown
parameters and a suitable burn structure with a trial and
error process, which is repeated until PMP is satisfied every-
where along the trajectory. This manual procedure is time-
consuming, and an automated procedure is useful if the
analysis has to cover a large number of different cases (e.g.,
a wide launch window). In the present problem the optimal
switching structure is largely dependent on Moon and Sun
positions and therefore on the departure date. A stepped
procedure is devised to overcome the convergence difficulties
related to the search for the optimal solution for an assigned
departure date. The procedure exploits continuation tech-
niques and is based on the observation that, in general, it
is more difficult to introduce a new arc than to remove an
existing one. It requires a tentative solution with the maxi-
mum number of thrust arcs that the problem could present.
A suitable solution is obtained by assuming a simplified
dynamical model that considers only the gravitational per-
turbation related to the second zonal harmonic; the optimal
solution for this problem (termed J2 problem in the follow-
ing) is independent of the departure date.

4.1. J2 Problem. The procedure starts using a dynamical
model that considers only the gravitational perturbation
related to the Earth oblateness, that is, C20 is the only nonzero
harmonic coefficient in (7). This problem is independent of
the departure date.

According to the Keplerian model, the initial conditions
of the spacecraft would permit ballistic attainment of the
desired final apogee and the deployment would require only
the perigee raising. The effect of the Earth oblateness on
semimajor axis and eccentricity is null after a complete orbit;
the perigee is unchanged, but the actual apogee of the initial
orbit is lower. Actual differences between final and initial
orbit in terms of perigee and apogee radii are 14650 km and
9172 km, respectively, when J2 is considered. The mission
requires to raise both perigee and apogee, but the apogee
maneuver is very expensive from a propulsive point of view,
in comparison to the very small perigee maneuver. The opti-
mal impulsive strategy [32] prescribes two burns: a perigee
impulse, followed by an apogee impulse (PA is used to
describe this burn sequence).

In the finite-thrust case it is convenient to split the
impulsive maneuvers into multiple burn arcs centered at the
apsides, in order to reduce the propulsive losses. The perigee
burn, which should precede all the apogee burns, is very

short and, if the number of revolutions is limited, the split
of the longer apogee burn is preferable in terms of propellant
consumption. The optimal burn structure consists of a single
perigee burn (to raise the apogee) followed by burns at every
apogee passage. When 4.5 revolutions are permitted, only
three apogee burns can be performed (engine cannot be used
in the proximity of departure and arrival apsides): the opti-
mal burn sequence is therefore PAAA.

After this suitable switching structure is assumed, one
can easily guess the right ascension at the engine switches.
The physical meaning of the primer vector suggests that the
adjoint vector to velocity should be parallel to the thrust
direction, which is essentially horizontal and in the orbital
plane for the initial burn. Latitude has a minimal influence,
and longitude has no influence at all; the corresponding
adjoint variables are therefore (roughly) zero. From a prac-
tical point of view, the magnitude of the primer vector Λ
and the adjoint variable to radius λr are the only parameters
difficult to estimate; convergence is easily obtained.

4.2. Stepped Procedure. When the complete dynamical model
is considered, the optimal trajectories (and the associated
control laws) are dependent on time and their burn structure
becomes more difficult to assess. Moon and Sun with their
attraction are capable of varying significantly the perigee
radius; the Moon, in particular, can raise/lower the perigee
even by 200 km in a single ballistic revolution, depending on
its position. Thus, the optimal length of the apogee burns is
dictated by the need not only of containing the propulsive
losses but also of modifying the orbital periods; the time of
passage at each consecutive apogee is anticipated or delayed,
in order to find the perturbing bodies in more favorable or
less unfavorable positions.

As a consequence, the optimal solution of the complete
problem does not exhibit a uniform split of the three apogee
burns. The optimal split depends on the departure date: in
many cases one burn (occasionally two burns) may vanish.
The switching structure of the mission departing on an
assigned date cannot be guessed a priori. A suitable proce-
dure that autonomously fixes the optimal switching structure
is here outlined. Starting from the solution of the J2 problem,
which is independent of the departure date and has engine
firings during all apogee passages, a fraction Pf of the
remaining perturbations is introduced, and the solution of
the corresponding MPBVP is searched for; the fraction Pf

is progressively increased in a discrete number of steps (kP)
until it reaches unity.

At each step, Pf is not imposed as an assigned constant
but is considered as an unknown parameter, with an addi-
tional constraint that enforces it to the desired value. The
iterative procedure progressively moves Pf towards its target
value, while the other unknowns are simultaneously adjusted
to satisfy all the boundary conditions. In the first kR iterations
a relaxation of the Newton scheme, which uses only a
fraction of the correction in (34), is used to avoid that abrupt
changes of the unknown parameters prevent convergence.

Convergence is usually reached if the step ΔPf is chosen
small enough. Solution is not achieved (or an unfeasible
solution is found) only when the optimal switching structure
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has one burn less than the previous step. In these cases,
the optimal solution, which was obtained with the previous
level of Pf , suggests which thrust arc has to be removed. In
particular, the maximum values of the switching function
during every burn arc are compared, and the burn arc with
the smaller value is removed. The right ascensions at the
extremes of the arc to be removed are imposed to coincide
with the closer apsis (thus imposing null length of the burn
arc); these new boundary conditions replace (33) at the same
extremes. The last converged solution is still used as initial
guess; at the first iteration the only unsatisfied boundary con-
ditions concern perturbation fraction and right ascensions
at the extremes of the arc to be removed. An analysis of the
achieved solution in the light of PMP is performed to con-
firm that the new switching structure is optimal.

The suitable values for kP and kR are problem dependent;
in general, one can expect to reduce issues related to con-
vergence when these two values are increased, but this would
also increase the overall computation time. For the problem
under investigation a good balance is given by choosing
kP = 7 (with Pf = 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1) and kR = 4
(1/5, 1/4, 1/3, and 1/2, in this order, are the fractions used).
The computational time to obtain a full-perturbation 4.5-
revolution solution is about 30 seconds on an Intel i7 CPU
at 2.67 GHz.

The procedure, which is fully automated, has been tested
for 366 departure dates between December 1, 2015, and
November 30, 2016, with one-day steps. An analysis of the
results has shown that the optimal solution according to
PMP is achieved almost in every case. In a single instance
the procedure removed a very tiny arc that is present in the
optimal solution. This error was due to insufficient values for
kP and kR; convergence was immediately obtained by adding
4 additional steps and increasing kR to 9. Moreover, some of
the solutions without the first apogee burn (P0AA) are only
suboptimal. The corresponding optimal solutions present
two ballistic revolutions, followed by a perigee and two
apogee burns (0PAA); however, final masses differ only by a
few grams. The correct solution can be achieved manually; an
autonomous convergence procedure was not developed due
to the scarce number and interest of these low-performance
opportunities.

The applicability of this procedure is more general and
may concern any other parameter whose progressive change
reduces the number of burn arcs. For instance, an analogous
procedure could be adopted to deal with changes of the
thrust magnitude; in particular, when the thrust is low
enough, the engine is on at every apsis passage, but burn arcs
may vanish when the thrust magnitude is increased: the anal-
ysis of the switching function suggests which arc has to be
removed. It was verified that an 8 N solution for the deploy-
ment here considered can be obtained from the 1 N solution
departing on the same date, by progressively increasing the
thrust magnitude (e.g., in 1 N steps).

5. Numerical Results

The deployment of the spacecraft into the target HEO was
studied in details using the indirect procedure previously
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Figure 3: Final mass for different numbers of revolutions (J2 only).

described. Perturbations (except J2) were initially neglected,
in order to assess the general characteristics of the optimal
strategy. Two thrust levels were considered with the aim of
better understanding how thrust acceleration and number of
revolutions influence the propellant consumption. No burns
are permitted in the first revolution and propulsion cannot
be employed at the final apogee insertion. The maneuver
requires at least 2.5 revolutions around the Earth; a maxi-
mum of 4.5 revolutions was assumed.

5.1. J2 Solution. Figure 3 shows that the final mass increases
with the number of revolutions and burns; this effect is
more important when the thrust acceleration is low. In fact,
the number of burns has no influence for impulsive thrust,
as impulses can be applied exactly at apogee and perigee
passages, without velocity losses; these instead arise for the
finite-thrust maneuvers as thrust is exploited far from the
apsides. A larger number of revolutions permit the split of the
propulsive effort between shorter arcs centered at the apsides,
with lower losses. One should also remember that a larger
number of burns are preferable as they allow an easier cor-
rection of the errors that may occur during the maneuvers.

Table 2 provides some details of these maneuvers. The
different time length of the thrust arcs during the same
transfer is related to the mass consumption; as the spacecraft
becomes lighter, thrust arcs are shortened in order to have an
almost uniform split of the total velocity change ΔV between
the burns. Note that the velocity is larger at each later apogee
and the spacecraft sweeps a longer arc even though the cor-
responding time length is shorter. This effect is again more
evident for the lowest thrust level. One should also note
that the time length of the perigee burn increases with the
number of revolutions. This happens because, during the
long apogee arc (A1) of a fast transfer, the apogee height is
slightly increased, reducing the requirement for the perigee
burn, as shown in Figure 4, which presents the evolution
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Table 2: Time length and angular length of burn arcs (J2 only).

T = 1 N

Nrev P1 A1 P2 A2 A3

2.5
Δt, h 2.66 76.50 3.77 — —

Δϑ, deg 250.15 58.73 154.38 —

3.5
Δt, h 0.45 35.55 — 34.79 —

Δϑ, deg 121.27 18.40 — 23.15 —

4.5
Δt, h 0.65 23.28 — 22.95 22.63

Δϑ, deg 152.88 10.90 12.97 15.02

T = 8 N

Nrev P1 A1 P2 A2 A3

2.5
Δt, h 0.09 8.50 — — —

Δϑ, deg 28.50 4.67 — — —

3.5
Δt, h 0.09 4.29 — 4.20 —

Δϑ, deg 28.97 2.04 — 2.61 —

4.5
Δt, h 0.09 2.87 — 2.83 2.79

Δϑ, deg 29.05 1.30 — 1.55 1.80
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Figure 4: Perigee and apogee evolution for the 2.5-revolution 8 N
transfer (J2 only).

of perigee and apogee for the 2.5-revolution transfer with
T = 8 N. The apogee change during the apogee burns (A1,
A2, and A3) when 4.5 revolutions are performed is instead
negligible, as shown in Figure 5. The ra and rp variations,
which occur during the coast arcs, are due to the J2 effect.

The shortest transfer with T = 1 N is the only maneuver
with two perigee burns as the time length of the apogee firing
would otherwise not be sufficient to obtain the required
perigee rise. For this reason, two perigee burns are necessary:
the first one (P1) increases the apogee above the required
value (see Figure 6) to have a longer available time for an effi-
cient perigee rise during the apogee burn; the second perigee
burn (P2) eventually reduces the apogee to the required
value.
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Figure 5: Perigee and apogee evolution for the 4.5-revolution 8 N
transfer (J2 only).

5.2. Lunisolar Perturbation. Perturbations other than J2,
mainly solar and lunar gravity, change the performance of
the deployment maneuver and the optimal switching struc-
ture. The final mass for the 4.5-revolution transfer with T =
8 N is shown in Figure 7 as a function of the departure date in
the 1-year launch window starting December 1, 2015 (MJD
57357), which is studied in detail. Figure 8 shows the final
mass in the first three months of the launch window and
indicates the burn structure of each optimal transfer.

A simplified analysis permits an estimation of the most
significant effect of the third body gravitation, which affects
the spacecraft perigee height, as a function of the perturbing
body position. Since the orbit is highly elliptic, the spacecraft
spends most time at the apogee (ν = 180 deg, ϑ = 90 deg)
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where, in addition, the perturbing acceleration is larger due
to the greater Earth-spacecraft distance. Therefore, only this
point is considered in the following analysis. An increase of
the perigee altitude is the mission main requirement, and
the acceleration component parallel to the apogee velocity,
that is, the tangential component at, is the main cause of the
investigated effect. If coplanar orbits are assumed, one easily
determines (see Figure 1)

at = −μb
r2
b

[(
rb
R

)3

− 1

]

cos ϑb (36)

with the spacecraft distance from the perturbing body
expressed as

R2 = r2
b + r2 − 2rbr sin ϑb. (37)
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When the Sun is the perturbing body, r � rb and
only first-order terms are retained to obtain (rb/R)3 ≈ 1 +
3(r/rb) sin ϑb and

at ≈ −μb
r2
b

3
2

sin(2ϑb) (38)

with maximum positive values at ϑb = 135 and 315 deg (the
most favorable positions of the Sun) and maximum negative
values at ϑb = 45 and 225 deg (the most unfavorable posi-
tions). If short-period oscillations due to the lunar gravity
are ignored (two cycles are found in each sidereal period
of the moon), the final mass in Figure 7 closely follows this
trend, with two sinusoids in the 1-year launch window. The
peak values occur for departure on January 24, 2016, (MJD
57411, right ascensions of the Sun at departure and arrival
are 307 and 323 deg) and July 27, 2016 (MJD 57596, 127 and
143 deg).

When the Moon is considered, the spacecraft distance
from the Earth becomes comparable to the Earth-Moon dis-
tance (r/rb ≈ 0.5) and the previous simplification does not
hold. The symmetry of the result with respect to the x axis
is broken and the effects of the third-body perturbation are
enhanced when spacecraft apogees and Moon are on the
same side with respect to the Earth, that is, when sin ϑb > 0.
The maximum benefit occurs when ϑb ≈ 115 deg (with a less
pronounced beneficial effect at ϑb ≈ 330 deg), whereas the
largest negative effect is at ϑb ≈ 65 deg (with a less remarkable
effect at ϑb ≈ 210 deg). Figure 9 shows the performance in
terms of final mass for the 2.5- and 4.5-revolution transfers,
when the Moon is held fixed during the whole maneuver
and the solar attraction is neglected. The longest missions
exploit significant lunar assists during five apogee passages,
two more than in the shortest missions: variations of the final
mass with respect to the average value show roughly the same
5/3 ratio.
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The moon influence becomes more complex when its
actual motion is considered. The final mass is shown in
Figure 10 as a function of the Moon position at the beginning
of the maneuver; the solar gravitational attraction is again
neglected. In this case, the final mass presents smaller vari-
ations than in the fixed-Moon case (y-axis scale is different
from Figure 9). During each spacecraft revolution the Moon
moves about 40–55 degrees (changes are due to the Moon
eccentricity and to the increase of the spacecraft orbital per-
iod caused by apogee burns) and will approximately occupy
an unfavorable position two revolutions after a favorable
configuration and vice versa.

The Moon is at the most favorable position (ϑb =
115 deg) at the first apogee passage of the best 2.5-revolution
transfer, offsetting the penalty at the last one (205 deg). On
the contrary, the worst performance occurs when the three
apogee passages find the Moon at about 20, 70, and 125
degrees, with the most unfavorable configuration at the
second passage.

The Moon moves about 210 degrees during the best 4.5-
revolution transfer and is in a favorable position at the first
(115 deg) and last (about 305 deg) apogee passages (with a
single unfavorable position, at about 205 degrees, during the
third passage). However, the spacecraft adjusts the burn
lengths and varies the orbital period during each revolution
to put forward or push back the passages in order to
enhance/reduce the effects of favorable/unfavorable geomet-
rical configurations. On average, the final mass is larger
in comparison to the shortest transfers, but the maximum
achievable mass is lower.

The switching structure of the optimal 4.5-revolution
missions (see Figure 8) changes with a clear regularity
according to the departure date. The best missions require
the removal of the last burn arc (PAA0), whereas the removal
of the first arc (P0AA) is beneficial in the worst cases.
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Figure 10: Final mass as a function of the Moon initial position for
2.5- and 4.5-revolution 8 N transfers (Sun neglected).

Optimization prescribes the removal of the last two arcs in
four cases, and the switching structure becomes PA00. The
same optimal structures repeat at roughly 14-day intervals,
corresponding to a half revolution of the Moon around the
Earth. For an assigned departure date, the thrust strategy has
almost no capability of phasing the initial apogee passage
with the Moon position. However, a longer thrust arc at the
first apogee increases the total time of flight. On the contrary,
when the first apogee burn vanishes, the following orbital
periods are shorter and the whole mission is faster. The trip
time may differ more than 12 hours (about 6 degree in angu-
lar position of the Moon). Figure 11 shows that the mission
departing on December 12 delays the last apogee passage to
find the Moon in a more favorable position. On the contrary,
but with a similar aim, the mission starting on December 5
anticipates the fourth apogee passage. The Moon complex
influence on the spacecraft trajectories suggests that further
analyses could provide interesting hints for all the missions
that exploit lunar resonance.

5.3. Example Case Analysis. The deployment with departure
on December 1, 2015, is analyzed in detail to describe the
continuation procedure, which progressively increases the
perturbation magnitude taken into account. Figure 12 shows
an enlargement of the switching function history as a func-
tion of the nondimensional variable ε, for different levels of
perturbation fraction Pf ; this representation is chosen for
the sake of clarity, even though it hides the actual arc lengths
(provided in Table 3). Thrust would be required at departure
and arrival where PMP is not satisfied (S f > 0) but is not
allowed for operational reasons. The odd intervals corre-
spond to coast arcs, whereas the second arc is the perigee
burn and the other even intervals correspond to three apogee
burns.
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Table 3: Characteristics of the 4.5-revolution transfer with depar-
ture on December 1, 2015.

Pf
t2 − t1 t4 − t3 t6 − t5 t8 − t7 mf

hr hr hr hr kg

0.0 0.09 2.87 2.83 2.79 845.57

0.2 0.09 3.59 2.75 2.16 845.40

0.4 0.09 4.27 2.79 1.45 845.25

0.6 0.09 4.97 2.96 0.59 845.10

0.8 0.09 5.51 3.02 — 844.96

1.0 0.09 5.84 2.70 — 844.83
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Figure 11: Moon angular position during 4.5-revolution transfers.

At the beginning of the stepped procedure, when no
perturbation except J2 is considered (Pf = 0), the switching
function is almost the same during every apogee burn. For
this particular departure date, when the lunisolar perturba-
tion is increased, the first apogee burn becomes more con-
venient, and in this arc the switching function peak grows,
while the burn length increases; on the other hand, the last
thrust arc is shorter, and there the switching function peak
decreases. The switching structure remains the same until
Pf = 0.6 but provides an unfeasible solution for Pf = 0.8 and
must be changed. The lowest peak of the switching function
for Pf = 0.6 occurs in the third apogee burn, which is
therefore removed. Convergence assuming the new PAA0
structure is obtained, and PMP confirms the optimality of
this solution. Arc time lengths and relevant masses for the
December 1 departure are summarized in Table 3.

Figure 13, which refers to the deployment with departure
on December 1, 2015 (8 N thrust, 4.5 revolutions), shows the
angle β between thrust and orbit plane (positive values tend
to increase inclination) and the angle α between the space-
craft velocity and the thrust projection onto the orbit plane
(positive values correspond to thrust towards the Earth).
When all perturbations are considered, a small out-of-plane
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thrust component is introduced during each burn in order
to slightly change the orbit plane and improve the beneficial
effect of the luni-solar gravitational perturbation. In the orbit
plane, the thrust is directed inward with respect to the Earth
when the spacecraft is moving outward (0 < ν < 180 deg, i.e.,
after perigee and before apogee) and vice-versa, to reduce the
orbit eccentricity in agreement with the variational equations
for orbital parameters.

6. Conclusions

The maneuver for the deployment of a satellite into a highly
elliptic orbit has been analyzed by means of an indirect opti-
mization method, which handles perturbations from Earth
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asphericity, lunar and solar gravity, and solar radiation
pressure. The optimal thrust strategy depends greatly on the
departure date, and is difficult to assess “a priori,” especially
for multirevolution missions. A continuation scheme based
on the gradual introduction of the relevant perturbations
is used to converge to the optimal solutions starting from
a single initial solution, obtained only considering J2 effect.
The switching function is checked during the procedure to
maintain the optimal burn structure. The algorithm proves
to be fast and reliable and convergence is almost always
obtained automatically, without any user’s action. Simple
adjustments of the procedure parameters may be necessary
when, in rare cases, convergence to the optimal solution is
not directly obtained.

The availability of a powerful tool permitted a detailed
analysis of this kind of deployment. The influence of thrust
level and number of revolutions on the transfer performance,
that is, mass delivered to the final orbit, has been investigated.
The benefit of an increased number of burns and the
performance drop that is experienced when a fast transfer
is combined with low thrust level have been quantified. As
far as the lunisolar perturbation is concerned, the position
of the perturbing bodies in correspondence of the spacecraft
passages at apogee has a major influence on performance.
Due to its slow apparent motion, the Sun position that gives
the maximum benefit can be exploited by properly choosing
the launch date, without significant changes of the thrust
strategy, that is, of the switching structure. On the contrary,
the Moon moves rapidly and occupies different positions at
the consecutive spacecraft apogee passages; in the search for
the optimal maneuver, the time lengths of coast and thrust
arcs change (in limit cases, some burn arcs may disappear
and the optimal switching structure is modified) in order to
find the Moon in the most favorable positions. Results show
that the proper selection of the departure date and the use of
an optimal strategy, which exploits luni-solar perturbations,
can save several kilograms of propellant.
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