55 research outputs found

    ESAT-6 Secretion-Independent Impact of ESX-1 Genes espF and espG1 on Virulence of Mycobacterium tuberculosis

    Get PDF
    Background. The pathogenesis of Mycobacterium tuberculosis largely depends on the secretion of the 6-kD early secreted antigenic target ESAT-6 (EsxA) and the 10-kD culture filtrate protein CFP-10 (EsxB) via the ESX-1/typeVII secretion system. Although gene products from the core RD1 region have been shown to be deeply implicated in this process, less is known about proteins encoded further upstream in the 5â€Č region of the ESX-1 cluster, such as the ESX-1 secretion-associated proteins (Esps) EspF or EspG1. Methods. To elucidate the role of EspF/G1, whose orthologs in Mycobacterium marinum and Mycobacterium smegmatis are reportedly involved in EsxA/B secretion, we constructed 3 M. tuberculosis knockout strains deleted for espF, espG1 or the segment corresponding to the combined RD1bcg-RD1mic region of bacille Calmette-GuĂ©rin (BCG) and Mycobacterium microti, which also contains espF and espG1. Results. Analysis of these strains revealed that, unlike observations with the model organisms M. smegmatis or M. marinum, disruption of espF and espG1 in M. tuberculosis did not impact the secretion and T cell recognition of EsxA/B but still caused severe attenuation. Conclusions. The separation of the 2 ESX-1-connected phenotypes (ie, EsxA/B secretion and virulence) indicates that EsxA/B secretion is not the only readout for a functional ESX-1 system and suggests that other processes involving EspF/G1 also play important roles in ESX-1-mediated pathogenicit

    Phagosomal Rupture by Mycobacterium tuberculosis Results in Toxicity and Host Cell Death

    Get PDF
    Survival within macrophages is a central feature of Mycobacterium tuberculosis pathogenesis. Despite significant advances in identifying new immunological parameters associated with mycobacterial disease, some basic questions on the intracellular fate of the causative agent of human tuberculosis in antigen-presenting cells are still under debate. To get novel insights into this matter, we used a single-cell fluorescence resonance energy transfer (FRET)-based method to investigate the potential cytosolic access of M. tuberculosis and the resulting cellular consequences in an unbiased, quantitative way. Analysis of thousands of THP-1 macrophages infected with selected wild-type or mutant strains of the M. tuberculosis complex unambiguously showed that M. tuberculosis induced a change in the FRET signal after 3 to 4 days of infection, indicating phagolysosomal rupture and cytosolic access. These effects were not seen for the strains M. tuberculosisΔRD1 or BCG, both lacking the ESX-1 secreted protein ESAT-6, which reportedly shows membrane-lysing properties. Complementation of these strains with the ESX-1 secretion system of M. tuberculosis restored the ability to cause phagolysosomal rupture. In addition, control experiments with the fish pathogen Mycobacterium marinum showed phagolysosomal translocation only for ESX-1 intact strains, further validating our experimental approach. Most importantly, for M. tuberculosis as well as for M. marinum we observed that phagolysosomal rupture was followed by necrotic cell death of the infected macrophages, whereas ESX-1 deletion- or truncation-mutants that remained enclosed within phagolysosomal compartments did not induce such cytotoxicity. Hence, we provide a novel mechanism how ESX-1 competent, virulent M. tuberculosis and M. marinum strains induce host cell death and thereby escape innate host defenses and favor their spread to new cells. In this respect, our results also open new research directions in relation with the extracellular localization of M. tuberculosis inside necrotic lesions that can now be tackled from a completely new perspective

    Cytokine and Chemokine Concentrations as Biomarkers of Feline Mycobacteriosis

    Get PDF
    Abstract Mycobacteriosis is an emerging zoonotic disease of domestic cats and timely, accurate diagnosis is currently challenging. To identify differential cytokine/chemokine concentrations in serum/plasma of cats, which could be diagnostic biomarkers of infection we analysed plasma/serum from 116 mycobacteria-infected cats, 16 healthy controls and six cats hospitalised for unrelated reasons was analysed using the Milliplex MAP Feline Cytokine Magnetic Bead multiplex assay. Three cytokines; sFAS, IL-13 and IL-4 were reduced while seven; GM-CSF, IL-2, PDGF-BB, IL-8, KC, RANTES and TNF-α were elevated in mycobacteria-infected cats compared to healthy controls. However, IL-8 and KC concentrations were not significantly different from cats hospitalised for other reasons. Elevations in TNF-α and PDGF-BB may have potential to identify M. bovis and M. microti infected cats specifically while GM-CSF, IL-2 and FLT3L were increased in MTBC infected cats. This study demonstrates potential use of feline tuberculosis as a spontaneously occurring model of this significant human disease. Cytokine profiling has clear diagnostic potential for mycobacteriosis of cats and could be used discriminate tuberculous from non-tuberculous disease to rapidly inform on zoonotic risk. Future work should focus on the in-field utility of these findings to establish diagnostic sensitivity and specificity of these markers

    ESX/type VII secretion systems and their role in host–pathogen interaction

    No full text
    International audienceThe ESX-1 system is responsible for the secretion of the prototypic ESX proteins, namely the 6 kDa early secreted antigenic target (ESAT-6) and the 10 kDa culture filtrate protein (CFP-10). These two proteins, which form a 1:1 heterodimeric complex, are among the most important proteins of Mycobacterium tuberculosis involved in host-pathogen interaction. They induce a strong T cell mediated immune response, are apparently involved in membrane and/or host-cell lysis and represent key virulence factors. There are four other paralogous ESX systems in M. tuberculosis, some of which are essential for in vitro growth. ESX systems also exist in many other actinobacteria and Gram-positive bacteria, and have recently been suggested to be named type VII secretion systems

    Lipids of Pathogenic Mycobacteria: Contributions to Virulence and Host Immune Suppression

    No full text
    International audienceMycobacteria are characterized by a complex cell wall, the lipid nature of which confers to the bacilli resistance to drying, acid or alkaline conditions, and to chemical disinfectants and therapeutic agents. Pathogenic species, such as Mycobacterium tuberculosis, M. leprae and M. ulcerans, have evolved various strategies to establish residence in their hosts and provoke long-term infections. There is mounting evidence that the unique lipids composing their envelopes, strategically located at the host-pathogen interface, contribute to their escape from immune surveillance. Here, the chemical structure, host cell receptors and biological actions of this emerging class of mycobacterial virulence factors are reviewed

    Breaching the phagosome, the case of the tuberculosis agent

    No full text
    International audienceThe interactions between microbes and their hosts are among the most complex biological phenomena known today. The interaction may reach from overall beneficial interaction, as observed for most microbiome/microbiota related interactions to interaction with virulent pathogens, against which host cells have evolved sophisticated defence strategies. Among the latter, the confinement of invading pathogens in a phagosome plays a key role, which often results in the destruction of the invader, whereas some pathogens may counteract phagosomal arrest and survive by gaining access to the cytosol of the host cell. In the current review, we will discuss recent insights into this dynamic process of host-pathogen interaction, using Mycobacterium tuberculosis and related pathogenic mycobacteria as main examples

    Pathogenicity in the tubercle bacillus: molecular and evolutionary determinants

    No full text
    International audienceIn contrast to the great majority of mycobacterial species that are harmless saprophytes, Mycobacterium tuberculosis and other closely related tubercle bacilli have evolved to be among the most important human and animal pathogens. The need to develop new strategies in the fight against tuberculosis (TB) and related diseases has fuelled research into the evolutionary success of the M. tuberculosis complex members. Amongst the various disciplines, genomics and functional genomics have been instrumental in improving our understanding of these organisms. In this review we will present some of the recent key findings on molecular determinants of mycobacterial pathogenicity and attenuation, the evolution of M. tuberculosis, genome dynamics, antigen mining for improved diagnostic and subunit antigens, and finally the identification of novel drug targets. The genomics revolution has changed the landscape of TB research, and now underpins our renewed efforts to defeat this deadly pathogen

    ESX/type VII secretion systems of mycobacteria: Insights into evolution, pathogenicity and protection

    No full text
    Pathogenesis of Mycobacterium tuberculosis depends on the secretion of key virulence factors, such as the 6 kDa early secreted antigenic target ESAT-6 (EsxA) and its protein partner, the 10 kDa culture filtrate protein CFP-10 (EsxB), via the ESX-1 secretion system. ESX-1 represents the prototype system of the recently named type VII secretion systems that exist in a range of actinobacteria. The M. tuberculosis genome harbours a total of five gene clusters potentially coding for type VII secretion systems, designated ESX-1 - ESX-5, with ESX-4 being the most ancient system from which other ESX systems seem to have evolved by gene duplication and gene insertion events. The five ESX systems show similarity in gene content and gene order but differ in function. ESX-1 and ESX-5 are both crucial virulence determinants of M. tuberculosis, but with different mechanisms. While ESX-1 is implicated in the lysis of the host cell phagosomes, ESX-5 is involved in secretion of the mycobacteria specific PE and PPE proteins and cell wall stability. Research on type VII secretion systems has thus become a large and competitive research topic that is tightly linked to studies of host-pathogen interaction of pathogenic mycobacteria. Insights into this matter are of relevance for redrawing the patho-evolution of M. tuberculosis, which might help improving current strategies for prevention, diagnostics and therapy of tuberculosis as well as elucidating the virulence mechanisms employed by this important human pathogen
    • 

    corecore