4,901 research outputs found
Clues to the Origin of the Mass-Metallicity Relation: Dependence on Star Formation Rate and Galaxy Size
We use a sample of 43,690 galaxies selected from the Sloan Digital Sky Survey
Data Release 4 to study the systematic effects of specific star formation rate
(SSFR) and galaxy size (as measured by the half light radius, r_h) on the
mass-metallicity relation. We find that galaxies with high SSFR or large r_h
for their stellar mass have systematically lower gas phase-metallicities (by up
to 0.2 dex) than galaxies with low SSFR or small r_h. We discuss possible
origins for these dependencies, including galactic winds/outflows, abundance
gradients, environment and star formation rate efficiencies.Comment: Accepted by ApJ Letter
A Hubble Space Telescope Snapshot Survey of Dynamically Close Galaxy Pairs in the CNOC2 Redshift Survey
We compare the structural properties of two classes of galaxies at
intermediate redshift: those in dynamically close galaxy pairs, and those which
are isolated. Both samples are selected from the CNOC2 Redshift Survey, and
have redshifts in the range 0.1 < z <0.6. Hubble Space Telescope WFPC2 images
were acquired as part of a snapshot survey, and were used to measure bulge
fraction and asymmetry for these galaxies. We find that paired and isolated
galaxies have identical distributions of bulge fractions. Conversely, we find
that paired galaxies are much more likely to be asymmetric (R_T+R_A >= 0.13)
than isolated galaxies. Assuming that half of these pairs are unlikely to be
close enough to merge, we estimate that 40% +/- 11% of merging galaxies are
asymmetric, compared with 9% +/- 3% of isolated galaxies. The difference is
even more striking for strongly asymmetric (R_T+R_A >= 0.16) galaxies: 25% +/-
8% for merging galaxies versus 1% +/- 1% for isolated galaxies. We find that
strongly asymmetric paired galaxies are very blue, with rest-frame B-R colors
close to 0.80, compared with a mean (B-R)_0 of 1.24 for all paired galaxies. In
addition, asymmetric galaxies in pairs have strong [OII]3727 emission lines. We
conclude that close to half of the galaxy pairs in our sample are in the
process of merging, and that most of these mergers are accompanied by triggered
star formation.Comment: Accepted for publication in the Astronomical Journal. 40 pages,
including 15 figures. For full resolution version, please see
http://www.trentu.ca/physics/dpatton/hstpairs
Breaking the Disk/Halo Degeneracy with Gravitational Lensing
The degeneracy between the disk and the dark matter contribution to galaxy
rotation curves remains an important uncertainty in our understanding of disk
galaxies. Here we discuss a new method for breaking this degeneracy using
gravitational lensing by spiral galaxies, and apply this method to the spiral
lens B1600+434 as an example. The combined image and lens photometry
constraints allow models for B1600+434 with either a nearly singular dark
matter halo, or a halo with a sizable core. A maximum disk model is ruled out
with high confidence. Further information, such as the circular velocity of
this galaxy, will help break the degeneracies. Future studies of spiral galaxy
lenses will be able to determine the relative contribution of disk, bulge, and
halo to the mass in the inner parts of galaxies.Comment: Replaced with minor revisions, a typo fixed, and reference added; 21
pages, 8 figures, ApJ accepte
Bulge mass is king: The dominant role of the bulge in determining the fraction of passive galaxies in the Sloan Digital Sky Survey
We investigate the origin of galaxy bimodality by quantifying the relative
role of intrinsic and environmental drivers to the cessation (or `quenching')
of star formation in over half a million local Sloan Digital Sky Survey (SDSS)
galaxies. Our sample contains a wide variety of galaxies at z=0.02-0.2, with
stellar masses of 8 < log(M*/M_sun) < 12, spanning the entire morphological
range from pure disks to spheroids, and over four orders of magnitude in local
galaxy density and halo mass. We utilise published star formation rates and add
to this recent GIM2D photometric and stellar mass bulge + disk decompositions
from our group. We find that the passive fraction of galaxies increases steeply
with stellar mass, halo mass, and bulge mass, with a less steep dependence on
local galaxy density and bulge-to-total stellar mass ratio (B/T). At fixed
internal properties, we find that central and satellite galaxies have different
passive fraction relationships. For centrals, we conclude that there is less
variation in the passive fraction at a fixed bulge mass, than for any other
variable, including total stellar mass, halo mass, and B/T. This implies that
the quenching mechanism must be most tightly coupled to the bulge. We argue
that radio-mode AGN feedback offers the most plausible explanation of the
observed trends.Comment: Accepted to MNRAS. 32 pages, 27 figures. [This version is virtually
identical to v1
Recovering 3D structural properties of galaxies from SDSS-like photometry
Because of the 3D nature of galaxies, an algorithm for constructing spatial
density distribution models of galaxies on the basis of galaxy images has many
advantages over surface density distribution approximations. We present a
method for deriving spatial structure and overall parameters of galaxies from
images and estimate its accuracy and derived parameter degeneracies on a sample
of idealised model galaxies. The test galaxies consist of a disc-like component
and a spheroidal component with varying proportions and properties. Both
components are assumed to be axially symmetric and coplanar. We simulate these
test galaxies as if observed in the SDSS project through ugriz filters, thus
gaining a set of realistically imperfect images of galaxies with known
intrinsic properties. These artificial SDSS galaxies were thereafter remodelled
by approximating the surface brightness distribution with a 2D projection of a
bulge+disc spatial distribution model and the restored parameters were compared
to the initial ones. Down to the r-band limiting magnitude 18, errors of the
restored integral luminosities and colour indices remain within 0.05 mag and
errors of the luminosities of individual components within 0.2 mag. Accuracy of
the restored bulge-to-disc ratios (B/D) is within 40% in most cases, and
becomes worse for galaxies with low B/D, but the general balance between bulges
and discs is not shifted systematically. Assuming that the intrinsic disc axial
ratio is < 0.3, the inclination angles can be estimated with errors < 5deg for
most of the galaxies with B/D < 2 and with errors < 15deg up to B/D = 6. Errors
of the recovered sizes of the galactic components are below 10% in most cases.
In general, models of disc components are more accurate than models of
spheroidal components for geometrical reasons.Comment: 15 pages, 13 figures, accepted for publication in RA
Role of the mitochondria on the paradoxical effect of red wine polyphenols on angiogenesis
Red wine polyphenol (RWPC) extracts has been reported to possess vasoprotective properties that involve nitric oxide (NO) release from endothelial cells via a redox- sensitive pathway. Besides, the molecular target of RWPC to release NO has been recently revealed and it involves the activation of the estrogen receptor alpha (ERα). Paradoxical effects of RWPC have been shown with regard to angiogenesis. Indeed in a rat model of postischemic neovascularization, low- dose is pro- whereas high dose is anti- angiogenic. NO and ERα
are key regulators of mitochondrial function. Furthermore, angiogenesis is a highly energetic process associated with mitochondrial biogenesis. However, whether RWPC induces changes in mitochondrial function has never been addressed and it is the aim of this study.
The effects of RWPC at low concentration (10- 4 g/l, LCP) and high concentration (10- 2 g/l, HCP) after 48 hours time exposure were investigated on human endothelial cells. Mitochondrial respiration, expression of biogenesis factors and DNA content was assessed using oxygraphy and qRT- PCR, respectively. In vitro capillary formation using Matrigel® was performed. The mechanism involved with respect to ER using the ER- antagonist fulvestrant was studied. The involvement of both NADPH oxidase and NO synthase was addressed using apocynin and L- NA respectively.
LCP, but not HCP, increased mitochondrial respiration. The effect of LCP was associated with an increase of both expression of several mitochondrial biogenesis factors (NRF- 1, NRF- 2, ERRα, Tfam, PolG) and mitochondrial DNA content whereas HCP had no effect on these parameters. All the effects of LCP on mitochondrial respiration are prevented by fulvestrant, apocynin and L- NA. LCP also promoted in vitro capillary elongation that was prevented by fulvestrant, apocynin and L- NA. Finally, the inhibition of mitochondrial protein synthesis using chloramphenicol suppressed the pro- angiogenic property of LCP.
The present study highlights the implication of the axis ER, NADPH oxidase and NOS pathways on both increase mitochondrial function and capillary elongation in response to RWPC at low concentration. They explain the paradoxical effect of RWPC depending on the concentration with respect to angiogenesis, mitochondria being key targets for its pro- angiogenic properties
Evaluating LANDSAT-4 MSS and TM data
Interband line pixel misregistrations were determined for the four MSS bands of the Mistassini, Ontario scene and multitemporal registration of LANDSAT-4 products were tested for two different geocoded scenes. Line and pixel misregistrations are tabulated as determined by the manual ground control points and the digital band to band correlation techniques. A method was developed for determining the spectral information content of TM images for forestry applications
The infrared imaging spectrograph (IRIS) for TMT: the science case
The InfraRed Imaging Spectrograph (IRIS) is a first-light instrument being
designed for the Thirty Meter Telescope (TMT). IRIS is a combination of an
imager that will cover a 16.4" field of view at the diffraction limit of TMT (4
mas sampling), and an integral field unit spectrograph that will sample objects
at 4-50 mas scales. IRIS will open up new areas of observational parameter
space, allowing major progress in diverse fields of astronomy. We present the
science case and resulting requirements for the performance of IRIS.
Ultimately, the spectrograph will enable very well-resolved and sensitive
studies of the kinematics and internal chemical abundances of high-redshift
galaxies, shedding light on many scenarios for the evolution of galaxies at
early times. With unprecedented imaging and spectroscopy of exoplanets, IRIS
will allow detailed exploration of a range of planetary systems that are
inaccessible with current technology. By revealing details about resolved
stellar populations in nearby galaxies, it will directly probe the formation of
systems like our own Milky Way. Because it will be possible to directly
characterize the stellar initial mass function in many environments and in
galaxies outside of the the Milky Way, IRIS will enable a greater understanding
of whether stars form differently in diverse conditions. IRIS will reveal
detailed kinematics in the centers of low-mass galaxies, allowing a test of
black hole formation scenarios. Finally, it will revolutionize the
characterization of reionization and the first galaxies to form in the
universe.Comment: to appear in Proc. SPIE 773
- …